Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production, chemical properties, occurrence  



1.1  Structure  





1.2  Chemical reactions  







2 Engineering properties  





3 Uses  



3.1  Niche uses  





3.2  Diamond simulant  







4 See also  





5 References  





6 Further reading  





7 External links  














Zirconium dioxide






العربية
تۆرکجه
Català
Чӑвашла
Čeština
Deutsch
Eesti
Español
فارسی
Français

ि
Bahasa Indonesia
Italiano
עברית
Magyar
Nederlands

Polski
Português
Русский
Slovenščina
Suomi
Svenska

Türkçe
Українська
Tiếng Vit



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Zirconia)

Zirconium dioxide

Names

IUPAC names

Zirconium dioxide
Zirconium(IV) oxide

Other names

Zirconia
Baddeleyite

Identifiers

CAS Number

3D model (JSmol)

ChemSpider

ECHA InfoCard

100.013.844 Edit this at Wikidata

EC Number

  • 215-227-2

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/2O.Zr

    Key: MCMNRKCIXSYSNV-UHFFFAOYSA-N

  • O=[Zr]=O

Properties

Chemical formula

ZrO
2

Molar mass

123.218 g/mol

Appearance

white powder

Density

5.68 g/cm3

Melting point

2,715 °C (4,919 °F; 2,988 K)

Boiling point

4,300 °C (7,770 °F; 4,570 K)

Solubility in water

negligible

Solubility

soluble in HF, and hot H2SO4

Refractive index (nD)

2.13

Thermochemistry

Std molar
entropy
(S298)

50.3 JK−1mol−1

Std enthalpy of
formation
fH298)

–1080 kJ/mol

Hazards

GHS labelling:

Pictograms

GHS07: Exclamation mark

Signal word

Warning

Hazard statements

H315, H319, H335

Precautionary statements

P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501

Flash point

Non-flammable

Lethal dose or concentration (LD, LC):

LD50 (median dose)

> 8.8 g/kg (oral, rat)

Safety data sheet (SDS)

MSDS

Related compounds

Other anions

Zirconium disulfide

Other cations

Titanium dioxide
Hafnium dioxide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

checkY verify (what is checkY☒N ?)

Infobox references

Zirconium dioxide (ZrO
2
), sometimes known as zirconia (not to be confused with zircon), is a white crystalline oxideofzirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant[clarification needed] stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.[1]

Production, chemical properties, occurrence[edit]

Zirconia is produced by calcining zirconium compounds, exploiting its high thermostability.[2]

Structure[edit]

Three phases are known: monoclinic below 1170 °C, tetragonal between 1170 °C and 2370 °C, and cubic above 2370 °C.[3] The trend is for higher symmetry at higher temperatures, as is usually the case. A small percentage of the oxides of calcium or yttrium stabilize in the cubic phase.[2] The very rare mineral tazheranite, (Zr,Ti,Ca)O2, is cubic. Unlike TiO2, which features six-coordinated titanium in all phases, monoclinic zirconia consists of seven-coordinated zirconium centres. This difference is attributed to the larger size of the zirconium atom relative to the titanium atom.[4]

Chemical reactions[edit]

Zirconia is chemically unreactive. It is slowly attacked by concentrated hydrofluoric acid and sulfuric acid. When heated with carbon, it converts to zirconium carbide. When heated with carbon in the presence of chlorine, it converts to zirconium(IV) chloride. This conversion is the basis for the purification of zirconium metal and is analogous to the Kroll process.

Engineering properties[edit]

Bearing balls

Zirconium dioxide is one of the most studied ceramic materials. ZrO2 adopts a monoclinic crystal structure at room temperature and transitions to tetragonal and cubic at higher temperatures. The change of volume caused by the structure transitions from tetragonal to monoclinic to cubic induces large stresses, causing it to crack upon cooling from high temperatures.[5] When the zirconia is blended with some other oxides, the tetragonal and/or cubic phases are stabilized. Effective dopants include magnesium oxide (MgO), yttrium oxide (Y2O3, yttria), calcium oxide (CaO), and cerium(III) oxide (Ce2O3).[6]

Zirconia is often more useful in its phase 'stabilized' state. Upon heating, zirconia undergoes disruptive phase changes. By adding small percentages of yttria, these phase changes are eliminated, and the resulting material has superior thermal, mechanical, and electrical properties. In some cases, the tetragonal phase can be metastable. If sufficient quantities of the metastable tetragonal phase is present, then an applied stress, magnified by the stress concentration at a crack tip, can cause the tetragonal phase to convert to monoclinic, with the associated volume expansion. This phase transformation can then put the crack into compression, retarding its growth, and enhancing the fracture toughness. This mechanism, known as transformation toughening, significantly extends the reliability and lifetime of products made with stabilized zirconia.[6][7]

The ZrO2 band gap is dependent on the phase (cubic, tetragonal, monoclinic, or amorphous) and preparation methods, with typical estimates from 5–7 eV.[8]

A special case of zirconia is that of tetragonal zirconia polycrystal, or TZP, which is indicative of polycrystalline zirconia composed of only the metastable tetragonal phase.

Uses[edit]

The main use of zirconia is in the production of hard ceramics, such as in dentistry,[9] with other uses including as a protective coating on particles of titanium dioxide pigments,[2] as a refractory material, in insulation, abrasives, and enamels.

Stabilized zirconia is used in oxygen sensors and fuel cell membranes because it has the ability to allow oxygen ions to move freely through the crystal structure at high temperatures. This high ionic conductivity (and a low electronic conductivity) makes it one of the most useful electroceramics.[2] Zirconium dioxide is also used as the solid electrolyteinelectrochromic devices.

Zirconia is a precursor to the electroceramic lead zirconate titanate (PZT), which is a high-κ dielectric, which is found in myriad components.

Niche uses[edit]

The very low thermal conductivityofcubic phase of zirconia also has led to its use as a thermal barrier coating, or TBC, in jet and diesel engines to allow operation at higher temperatures.[10] Thermodynamically, the higher the operation temperature of an engine, the greater the possible efficiency. Another low-thermal-conductivity use is as a ceramic fiber insulation for crystal growth furnaces, fuel-cell stacks, and infrared heating systems.

This material is also used in dentistry in the manufacture of subframes for the construction of dental restorations such as crowns and bridges, which are then veneered with a conventional feldspathic porcelain for aesthetic reasons, or of strong, extremely durable dental prostheses constructed entirely from monolithic zirconia, with limited but constantly improving aesthetics.[11][12] Zirconia stabilized with yttria (yttrium oxide), known as yttria-stabilized zirconia, can be used as a strong base material in some full ceramic crown restorations.[12][13]

Transformation-toughened zirconia is used to make ceramic knives. Because of the hardness, ceramic-edged cutlery stays sharp longer than steel edged products.[14]

Due to its infusibility and brilliant luminosity when incandescent, it was used as an ingredient of sticks for limelight.[citation needed]

Zirconia has been proposed to electrolyze carbon monoxide and oxygen from the atmosphere of Mars to provide both fuel and oxidizer that could be used as a store of chemical energy for use with surface transportation on Mars. Carbon monoxide/oxygen engines have been suggested for early surface transportation use, as both carbon monoxide and oxygen can be straightforwardly produced by zirconia electrolysis without requiring use of any of the Martian water resources to obtain hydrogen, which would be needed for the production of methane or any hydrogen-based fuels.[15]

Zirconia can be used as photocatalyst[16] since its high band gap (~ 5 eV)[17] allows the generation of high-energy electrons and holes. Some studies demonstrated the activity of doped zirconia (in order to increase visible light absorption) in degrading organic compounds[18][19] and reducing Cr(VI) from wastewaters.[20]

Zirconia is also a potential high-κ dielectric material with potential applications as an insulator in transistors.

Zirconia is also employed in the deposition of optical coatings; it is a high-index material usable from the near-UV to the mid-IR, due to its low absorption in this spectral region. In such applications, it is typically deposited by PVD.[21]

In jewelry making, some watch cases are advertised as being "black zirconium oxide".[22] In 2015 Omega released a fully ZrO2 watch named "The Dark Side of The Moon"[23] with ceramic case, bezel, pushers, and clasp, advertising it as four times harder than stainless steel and therefore much more resistant to scratches during everyday use.

Ingas tungsten arc welding, tungsten electrodes containing 1% zirconium oxide (a.k.a. zirconia) instead of 2% thorium have good arc starting and current capacity, and are not radioactive.[24]

Diamond simulant[edit]

Brilliant-cut cubic zirconia

Single crystals of the cubic phase of zirconia are commonly used as diamond simulantinjewellery. Like diamond, cubic zirconia has a cubic crystal structure and a high index of refraction. Visually discerning a good quality cubic zirconia gem from a diamond is difficult, and most jewellers will have a thermal conductivity tester to identify cubic zirconia by its low thermal conductivity (diamond is a very good thermal conductor). This state of zirconia is commonly called cubic zirconia, CZ, or zirconbyjewellers, but the last name is not chemically accurate. Zircon is actually the mineral name for naturally occurring zirconium(IV) silicate (ZrSiO4).

See also[edit]

References[edit]

  1. ^ Wang, S. F.; Zhang, J.; Luo, D. W.; Gu, F.; Tang, D. Y.; Dong, Z. L.; Tan, G. E. B.; Que, W. X.; Zhang, T. S.; Li, S.; Kong, L. B. (2013-05-01). "Transparent ceramics: Processing, materials and applications". Progress in Solid State Chemistry. 41 (1): 20–54. doi:10.1016/j.progsolidstchem.2012.12.002. ISSN 0079-6786.
  • ^ a b c d Ralph Nielsen "Zirconium and Zirconium Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a28_543
  • ^ R. Stevens, 1986. Introduction to Zirconia. Magnesium Elektron Publication No 113
  • ^ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4
  • ^ Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M. (November 2014). "Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys". Journal of Nuclear Materials. 454 (1–3): 290–297. Bibcode:2014JNuM..454..290P. doi:10.1016/j.jnucmat.2014.08.020.
  • ^ a b Evans, A.G.; Cannon, R.M. (1986). "Toughening of brittle solids by martensitic transformations". Acta Metall. 34: 761. doi:10.1016/0001-6160(86)90052-0.
  • ^ Porter, D.L.; Evans, A.G.; Heuer, A.H. (1979). "Transformation toughening in PSZ". Acta Metall. 27: 1649. doi:10.1016/0001-6160(79)90046-4.
  • ^ Chang, Jane P.; You-Sheng Lin; Karen Chu (2001). "Rapid thermal chemical vapor deposition of zirconium oxide for metal–oxide–semiconductor field effect transistor application". Journal of Vacuum Science and Technology B. 19 (5): 1782–1787. Bibcode:2001JVSTB..19.1782C. doi:10.1116/1.1396639.
  • ^ Gambogi, Joseph. "Zirconium and Hafnium Statistics and Information". USGS National Minerals Information Center. Archived from the original on 18 February 2018. Retrieved 5 May 2018.
  • ^ "Thermal-barrier coatings for more efficient gas-turbine engines". studylib.net. Retrieved 2018-08-06.
  • ^ Papaspyridakos, Panos; Kunal Lal (2008). "Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report". The Journal of Prosthetic Dentistry. 100 (3): 165–172. doi:10.1016/S0022-3913(08)00110-8. PMID 18762028.
  • ^ a b Kastyl, Jaroslav; Chlup, Zdenek; Stastny, Premysl; Trunec, Martin (2020-08-17). "Machinability and properties of zirconia ceramics prepared by gelcasting method". Advances in Applied Ceramics. 119 (5–6): 252–260. Bibcode:2020AdApC.119..252K. doi:10.1080/17436753.2019.1675402. hdl:11012/181089. ISSN 1743-6753. S2CID 210795876.
  • ^ Shen, James, ed. (2013). Advanced ceramics for dentistry (1st ed.). Amsterdam: Elsevier/BH. p. 271. ISBN 978-0123946195.
  • ^ "Serrated 12cm blade Ceramic Kitchen Knives and Tools". Ceramic Kitchen Knives and Tools | Kyocera Asia-Pacific. Retrieved 4 August 2021.
  • ^ Landis, Geoffrey A.; Linne, Diane L. (2001). "Mars Rocket Vehicle Using In Situ Propellants". Journal of Spacecraft and Rockets. 38 (5): 730–35. Bibcode:2001JSpRo..38..730L. doi:10.2514/2.3739.
  • ^ Kohno, Yoshiumi; Tanaka, Tsunehiro; Funabiki, Takuzo; Yoshida, Satohiro (1998). "Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2". Journal of the Chemical Society, Faraday Transactions. 94 (13): 1875–1880. doi:10.1039/a801055b.
  • ^ Gionco, Chiara; Paganini, Maria C.; Giamello, Elio; Burgess, Robertson; Di Valentin, Cristiana; Pacchioni, Gianfranco (15 January 2014). "Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation". The Journal of Physical Chemistry Letters. 5 (3): 447–451. doi:10.1021/jz402731s. hdl:2318/141649. PMID 26276590.
  • ^ Yuan, Quan; Liu, Yang; Li, Le-Le; Li, Zhen-Xing; Fang, Chen-Jie; Duan, Wen-Tao; Li, Xing-Guo; Yan, Chun-Hua (August 2009). "Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution". Microporous and Mesoporous Materials. 124 (1–3): 169–178. Bibcode:2009MicMM.124..169Y. doi:10.1016/j.micromeso.2009.05.006.
  • ^ Bortot Coelho, Fabrício; Gionco, Chiara; Paganini, Maria; Calza, Paola; Magnacca, Giuliana (3 April 2019). "Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light". Nanomaterials. 9 (4): 534. doi:10.3390/nano9040534. PMC 6523972. PMID 30987140.
  • ^ Bortot Coelho, Fabrício Eduardo; Candelario, Victor M.; Araújo, Estêvão Magno Rodrigues; Miranda, Tânia Lúcia Santos; Magnacca, Giuliana (18 April 2020). "Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light". Nanomaterials. 10 (4): 779. doi:10.3390/nano10040779. ISSN 2079-4991. PMC 7221772. PMID 32325680.
  • ^ "Zirconium Oxide Zr02 For Optical Coating". Materion. Archived from the original on October 20, 2013. Retrieved April 30, 2013.
  • ^ "Omega Co-Axial Chronograph 44.25 mm". OMEGA Watches. Archived from the original on 2016-03-26. Retrieved 2016-03-27.
  • ^ "Speedmaster Moonwatch Dark Side Of The Moon | OMEGA". Omega. Archived from the original on 2018-02-09. Retrieved 2018-02-08.
  • ^ "Tungsten Selection" (PDF). Arc-Zone.com. Carlsbad, California. 2009. Retrieved 2015-06-15.
  • Further reading[edit]

    External links[edit]

    Zr(II)

  • ZrH2
  • ZrSi2
  • Zr(III)

  • ZrCl3
  • ZrBr3
  • ZrI3
  • ZrP
  • Zr(IV)

  • ZrBr4
  • ZrC
  • ZrCl4
  • Zr(IO3)4
  • ZrI4
  • Zr(NO3)4
  • ZrOCl2
  • Zr(ClO4)4
  • Zr(OH)4
  • ZrP2
  • Zr(HPO4)2
  • ZrS2
  • Zr(SO4)2
  • Zr(SeO4)2
  • ZrSiO4
  • Zr(WO4)2
  • Acids and complexes

  • Li2ZrF6
  • K2ZrF6
  • (NH4)2ZrF6
  • ZrO2
  • Cs2ZrO3
  • Organozirconium(IV)

  • (C5H5)ZrCl3
  • Cp2ZrCl2
  • C
    72
    H
    140
    ZrO
    8
  • Mixed oxidation states

  • Boron suboxide (B12O2)
  • Carbon suboxide (C3O2)
  • Chlorine perchlorate (Cl2O4)
  • Chloryl perchlorate (Cl2O6)
  • Cobalt(II,III) oxide (Co3O4)
  • Dichlorine pentoxide (Cl2O5)
  • Iron(II,III) oxide (Fe3O4)
  • Lead(II,IV) oxide (Pb3O4)
  • Manganese(II,III) oxide (Mn3O4)
  • Mellitic anhydride (C12O9)
  • Praseodymium(III,IV) oxide (Pr6O11)
  • Silver(I,III) oxide (Ag2O2)
  • Terbium(III,IV) oxide (Tb4O7)
  • Tribromine octoxide (Br3O8)
  • Triuranium octoxide (U3O8)
  • +1 oxidation state

  • Copper(I) oxide (Cu2O)
  • Caesium monoxide (Cs2O)
  • Dicarbon monoxide (C2O)
  • Dichlorine monoxide (Cl2O)
  • Gallium(I) oxide (Ga2O)
  • Iodine(I) oxide (I2O)
  • Lithium oxide (Li2O)
  • Mercury(I) oxide (Hg2O)
  • Nitrous oxide (N2O)
  • Potassium oxide (K2O)
  • Rubidium oxide (Rb2O)
  • Silver oxide (Ag2O)
  • Thallium(I) oxide (Tl2O)
  • Sodium oxide (Na2O)
  • Water (hydrogen oxide) (H2O)
  • +2 oxidation state

  • Barium oxide (BaO)
  • Berkelium monoxide (BkO)
  • Beryllium oxide (BeO)
  • Bromine monoxide (BrO)
  • Cadmium oxide (CdO)
  • Calcium oxide (CaO)
  • Carbon monoxide (CO)
  • Chlorine monoxide (ClO)
  • Chromium(II) oxide (CrO)
  • Cobalt(II) oxide (CoO)
  • Copper(II) oxide (CuO)
  • Dinitrogen dioxide (N2O2)
  • Europium(II) oxide (EuO)
  • Germanium monoxide (GeO)
  • Iron(II) oxide (FeO)
  • Iodine monoxide (IO)
  • Lead(II) oxide (PbO)
  • Magnesium oxide (MgO)
  • Manganese(II) oxide (MnO)
  • Mercury(II) oxide (HgO)
  • Nickel(II) oxide (NiO)
  • Nitric oxide (NO)
  • Palladium(II) oxide (PdO)
  • Phosphorus monoxide (PO)
  • Polonium monoxide (PoO)
  • Protactinium monoxide (PaO)
  • Radium oxide (RaO)
  • Silicon monoxide (SiO)
  • Strontium oxide (SrO)
  • Sulfur monoxide (SO)
  • Disulfur dioxide (S2O2)
  • Thorium monoxide (ThO)
  • Tin(II) oxide (SnO)
  • Titanium(II) oxide (TiO)
  • Vanadium(II) oxide (VO)
  • Yttrium(II) oxide (YO)
  • Zinc oxide (ZnO)
  • +3 oxidation state

  • Aluminium oxide (Al2O3)
  • Americium(III) oxide (Am2O3)
  • Antimony trioxide (Sb2O3)
  • Arsenic trioxide (As2O3)
  • Berkelium(III) oxide (Bk2O3)
  • Bismuth(III) oxide (Bi2O3)
  • Boron trioxide (B2O3)
  • Caesium sesquioxide (Cs2O3)
  • Californium(III) oxide (Cf2O3)
  • Cerium(III) oxide (Ce2O3)
  • Chromium(III) oxide (Cr2O3)
  • Cobalt(III) oxide (Co2O3)
  • Dinitrogen trioxide (N2O3)
  • Dysprosium(III) oxide (Dy2O3)
  • Einsteinium(III) oxide (Es2O3)
  • Erbium(III) oxide (Er2O3)
  • Europium(III) oxide (Eu2O3)
  • Gadolinium(III) oxide (Gd2O3)
  • Gallium(III) oxide (Ga2O3)
  • Gold(III) oxide (Au2O3)
  • Holmium(III) oxide (Ho2O3)
  • Indium(III) oxide (In2O3)
  • Iron(III) oxide (Fe2O3)
  • Lanthanum oxide (La2O3)
  • Lutetium(III) oxide (Lu2O3)
  • Manganese(III) oxide (Mn2O3)
  • Neodymium(III) oxide (Nd2O3)
  • Nickel(III) oxide (Ni2O3)
  • Phosphorus trioxide (P4O6)
  • Praseodymium(III) oxide (Pr2O3)
  • Promethium(III) oxide (Pm2O3)
  • Rhodium(III) oxide (Rh2O3)
  • Samarium(III) oxide (Sm2O3)
  • Scandium oxide (Sc2O3)
  • Terbium(III) oxide (Tb2O3)
  • Thallium(III) oxide (Tl2O3)
  • Thulium(III) oxide (Tm2O3)
  • Titanium(III) oxide (Ti2O3)
  • Tungsten(III) oxide (W2O3)
  • Vanadium(III) oxide (V2O3)
  • Ytterbium(III) oxide (Yb2O3)
  • Yttrium(III) oxide (Y2O3)
  • +4 oxidation state

  • Berkelium(IV) oxide (BkO2)
  • Bromine dioxide (BrO2)
  • Californium dioxide (CfO2)
  • Carbon dioxide (CO2)
  • Carbon trioxide (CO3)
  • Cerium(IV) oxide (CeO2)
  • Chlorine dioxide (ClO2)
  • Chromium(IV) oxide (CrO2)
  • Curium(IV) oxide (CmO2)
  • Dinitrogen tetroxide (N2O4)
  • Germanium dioxide (GeO2)
  • Iodine dioxide (IO2)
  • Hafnium(IV) oxide (HfO2)
  • Lead dioxide (PbO2)
  • Manganese dioxide (MnO2)
  • Neptunium(IV) oxide (NpO2)
  • Nitrogen dioxide (NO2)
  • Osmium dioxide (OsO2)
  • Plutonium(IV) oxide (PuO2)
  • Polonium dioxide (PoO2)
  • Praseodymium(IV) oxide (PrO2)
  • Protactinium(IV) oxide (PaO2)
  • Rhodium(IV) oxide (RhO2)
  • Ruthenium(IV) oxide (RuO2)
  • Selenium dioxide (SeO2)
  • Silicon dioxide (SiO2)
  • Sulfur dioxide (SO2)
  • Technetium(IV) oxide (TcO2)
  • Tellurium dioxide (TeO2)
  • Terbium(IV) oxide (TbO2)
  • Thorium dioxide (ThO2)
  • Tin dioxide (SnO2)
  • Titanium dioxide (TiO2)
  • Tungsten(IV) oxide (WO2)
  • Uranium dioxide (UO2)
  • Vanadium(IV) oxide (VO2)
  • Zirconium dioxide (ZrO2)
  • +5 oxidation state

  • Arsenic pentoxide (As2O5)
  • Bismuth pentoxide (Bi2O5)
  • Dinitrogen pentoxide (N2O5)
  • Niobium pentoxide (Nb2O5)
  • Phosphorus pentoxide (P2O5)
  • Protactinium(V) oxide (Pa2O5)
  • Tantalum pentoxide (Ta2O5)
  • Vanadium(V) oxide (V2O5)
  • +6 oxidation state

  • Molybdenum trioxide (MoO3)
  • Polonium trioxide (PoO3)
  • Rhenium trioxide (ReO3)
  • Selenium trioxide (SeO3)
  • Sulfur trioxide (SO3)
  • Tellurium trioxide (TeO3)
  • Tungsten trioxide (WO3)
  • Uranium trioxide (UO3)
  • Xenon trioxide (XeO3)
  • +7 oxidation state

  • Manganese heptoxide (Mn2O7)
  • Rhenium(VII) oxide (Re2O7)
  • Technetium(VII) oxide (Tc2O7)
  • +8 oxidation state

  • Osmium tetroxide (OsO4)
  • Ruthenium tetroxide (RuO4)
  • Xenon tetroxide (XeO4)
  • Hassium tetroxide (HsO4)
  • Related

  • Suboxide
  • Oxyanion
  • Ozonide
  • Peroxide
  • Superoxide
  • Oxypnictide
  • Oxides are sorted by oxidation state. Category:Oxides


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Zirconium_dioxide&oldid=1226773604"

    Categories: 
    Biomaterials
    Ceramic materials
    High-κ dielectrics
    Refractory materials
    Zirconium dioxide
    Hidden categories: 
    Articles without InChI source
    Articles without EBI source
    Articles without KEGG source
    ECHA InfoCard ID from Wikidata
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing clarification from May 2024
    All articles with unsourced statements
    Articles with unsourced statements from June 2012
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 1 June 2024, at 18:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki