Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Heat kernel






Español
Français



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at time t = 0.

Fundamental solution of the one-dimensional heat equation. Red: time course of . Blue: time courses of for two selected points. Interactive version.

The most well-known heat kernel is the heat kernel of d-dimensional Euclidean space Rd, which has the form of a time-varying Gaussian function,

which is defined for all and . This solves the heat equation
where δ is a Dirac delta distribution and the limit is taken in the sense of distributions, that is, for every smooth function ϕofcompact support, we have

On a more general domain ΩinRd, such an explicit formula is not generally possible. The next simplest cases of a disc or square involve, respectively, Bessel functions and Jacobi theta functions. Nevertheless, the heat kernel still exists and is smooth for t > 0 on arbitrary domains and indeed on any Riemannian manifold with boundary, provided the boundary is sufficiently regular. More precisely, in these more general domains, the heat kernel the solution of the initial boundary value problem

It is not difficult to derive a formal expression for the heat kernel on an arbitrary domain. Consider the Dirichlet problem in a connected domain (or manifold with boundary) U. Let λn be the eigenvalues for the Dirichlet problem of the Laplacian

Let ϕn denote the associated eigenfunctions, normalized to be orthonormal in L2(U). The inverse Dirichlet Laplacian Δ−1 is a compact and selfadjoint operator, and so the spectral theorem implies that the eigenvalues of Δ satisfy
The heat kernel has the following expression:

(1)

Formally differentiating the series under the sign of the summation shows that this should satisfy the heat equation. However, convergence and regularity of the series are quite delicate.

The heat kernel is also sometimes identified with the associated integral transform, defined for compactly supported smooth ϕby

The spectral mapping theorem gives a representation of T in the form

There are several geometric results on heat kernels on manifolds; say, short-time asymptotics, long-time asymptotics, and upper/lower bounds of Gaussian type.

See also[edit]

References[edit]

  • Berline, Nicole; Getzler, E.; Vergne, Michèle (2004), Heat Kernels and Dirac Operators, Berlin, New York: Springer-Verlag
  • Chavel, Isaac (1984), Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Boston, MA: Academic Press, ISBN 978-0-12-170640-1, MR 0768584.
  • Evans, Lawrence C. (1998), Partial differential equations, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0772-9
  • Gilkey, Peter B. (1994), Invariance Theory, the Heat Equation, and the Atiyah–Singer Theorem, ISBN 978-0-8493-7874-4
  • Grigor'yan, Alexander (2009), Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-4935-4, MR 2569498

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Heat_kernel&oldid=1216885721"

    Categories: 
    Heat conduction
    Spectral theory
    Parabolic partial differential equations
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 2 April 2024, at 15:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki