Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Notation  





3 Symbol of a differential operator  





4 Analytical index  





5 Topological index  



5.1  Relation to GrothendieckRiemannRoch  







6 Extensions of the AtiyahSinger index theorem  



6.1  Teleman index theorem  





6.2  ConnesDonaldsonSullivanTeleman index theorem  





6.3  Other extensions  







7 Examples  



7.1  Chern-Gauss-Bonnet theorem  





7.2  HirzebruchRiemannRoch theorem  





7.3  Hirzebruch signature theorem  





7.4  Â genus and Rochlin's theorem  







8 Proof techniques  



8.1  Pseudodifferential operators  





8.2  Cobordism  





8.3  K-theory  





8.4  Heat equation  







9 See also  





10 Citations  





11 References  





12 External links  



12.1  Links on the theory  





12.2  Links of interviews  
















AtiyahSinger index theorem






العربية
Català
Deutsch
Ελληνικά
Español
Euskara
فارسی
Français
Galego

Italiano
Nederlands

Português
Русский
Српски / srpski
Türkçe
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Index theorem)

Atiyah–Singer index theorem
FieldDifferential geometry
First proof byMichael Atiyah and Isadore Singer
First proof in1963
ConsequencesChern–Gauss–Bonnet theorem
Grothendieck–Riemann–Roch theorem
Hirzebruch signature theorem
Rokhlin's theorem

Indifferential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963),[1] states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data). It includes many other theorems, such as the Chern–Gauss–Bonnet theorem and Riemann–Roch theorem, as special cases, and has applications to theoretical physics.[2][3]

History[edit]

The index problem for elliptic differential operators was posed by Israel Gel'fand.[4] He noticed the homotopy invariance of the index, and asked for a formula for it by means of topological invariants. Some of the motivating examples included the Riemann–Roch theorem and its generalization the Hirzebruch–Riemann–Roch theorem, and the Hirzebruch signature theorem. Friedrich Hirzebruch and Armand Borel had proved the integrality of the  genus of a spin manifold, and Atiyah suggested that this integrality could be explained if it were the index of the Dirac operator (which was rediscovered by Atiyah and Singer in 1961).

The Atiyah–Singer theorem was announced in 1963.[1] The proof sketched in this announcement was never published by them, though it appears in Palais's book.[5] It appears also in the "Séminaire Cartan-Schwartz 1963/64"[6] that was held in Paris simultaneously with the seminar led by Richard PalaisatPrinceton University. The last talk in Paris was by Atiyah on manifolds with boundary. Their first published proof[7] replaced the cobordism theory of the first proof with K-theory, and they used this to give proofs of various generalizations in another sequence of papers.[8]

Notation[edit]

Symbol of a differential operator[edit]

IfD is a differential operator on a Euclidean space of order nink variables , then its symbol is the function of 2k variables , given by dropping all terms of order less than n and replacing by. So the symbol is homogeneous in the variables y, of degree n. The symbol is well defined even though does not commute with because we keep only the highest order terms and differential operators commute "up to lower-order terms". The operator is called elliptic if the symbol is nonzero whenever at least one y is nonzero.

Example: The Laplace operator in k variables has symbol , and so is elliptic as this is nonzero whenever any of the 's are nonzero. The wave operator has symbol , which is not elliptic if , as the symbol vanishes for some non-zero values of the ys.

The symbol of a differential operator of order n on a smooth manifold X is defined in much the same way using local coordinate charts, and is a function on the cotangent bundleofX, homogeneous of degree n on each cotangent space. (In general, differential operators transform in a rather complicated way under coordinate transforms (see jet bundle); however, the highest order terms transform like tensors so we get well defined homogeneous functions on the cotangent spaces that are independent of the choice of local charts.) More generally, the symbol of a differential operator between two vector bundles E and F is a section of the pullback of the bundle Hom(E, F) to the cotangent space of X. The differential operator is called elliptic if the element of Hom(Ex, Fx) is invertible for all non-zero cotangent vectors at any point xofX.

A key property of elliptic operators is that they are almost invertible; this is closely related to the fact that their symbols are almost invertible. More precisely, an elliptic operator D on a compact manifold has a (non-unique) parametrix (orpseudoinverse) D′ such that DD′ -1 and D′D -1 are both compact operators. An important consequence is that the kernel of D is finite-dimensional, because all eigenspaces of compact operators, other than the kernel, are finite-dimensional. (The pseudoinverse of an elliptic differential operator is almost never a differential operator. However, it is an elliptic pseudodifferential operator.)

Analytical index[edit]

As the elliptic differential operator D has a pseudoinverse, it is a Fredholm operator. Any Fredholm operator has an index, defined as the difference between the (finite) dimension of the kernelofD (solutions of Df = 0), and the (finite) dimension of the cokernelofD (the constraints on the right-hand-side of an inhomogeneous equation like Df = g, or equivalently the kernel of the adjoint operator). In other words,

Index(D) = dim Ker(D) − dim Coker(D) = dim Ker(D) − dim Ker(D*).

This is sometimes called the analytical indexofD.

Example: Suppose that the manifold is the circle (thought of as R/Z), and D is the operator d/dx − λ for some complex constant λ. (This is the simplest example of an elliptic operator.) Then the kernel is the space of multiples of exp(λx) if λ is an integral multiple of 2πi and is 0 otherwise, and the kernel of the adjoint is a similar space with λ replaced by its complex conjugate. So D has index 0. This example shows that the kernel and cokernel of elliptic operators can jump discontinuously as the elliptic operator varies, so there is no nice formula for their dimensions in terms of continuous topological data. However the jumps in the dimensions of the kernel and cokernel are the same, so the index, given by the difference of their dimensions, does indeed vary continuously, and can be given in terms of topological data by the index theorem.

Topological index[edit]

The topological index of an elliptic differential operator between smooth vector bundles and on an -dimensional compact manifold is given by

in other words the value of the top dimensional component of the mixed cohomology class on the fundamental homology class of the manifold up to a difference of sign. Here,

In some situations, it is possible to simplify the above formula for computational purposes. In particular, if is a -dimensional orientable (compact) manifold with non-zero Euler class , then applying the Thom isomorphism and dividing by the Euler class,[26][27] the topological index may be expressed as

where division makes sense by pulling back from the cohomology ring of the classifying space .

One can also define the topological index using only K-theory (and this alternative definition is compatible in a certain sense with the Chern-character construction above). If X is a compact submanifold of a manifold Y then there is a pushforward (or "shriek") map from K(TX) to K(TY). The topological index of an element of K(TX) is defined to be the image of this operation with Y some Euclidean space, for which K(TY) can be naturally identified with the integers Z (as a consequence of Bott-periodicity). This map is independent of the embedding of X in Euclidean space. Now a differential operator as above naturally defines an element of K(TX), and the image in Z under this map "is" the topological index.

As usual, D is an elliptic differential operator between vector bundles E and F over a compact manifold X.

The index problem is the following: compute the (analytical) index of D using only the symbol s and topological data derived from the manifold and the vector bundle. The Atiyah–Singer index theorem solves this problem, and states:

The analytical index of D is equal to its topological index.

In spite of its formidable definition, the topological index is usually straightforward to evaluate explicitly. So this makes it possible to evaluate the analytical index. (The cokernel and kernel of an elliptic operator are in general extremely hard to evaluate individually; the index theorem shows that we can usually at least evaluate their difference.) Many important invariants of a manifold (such as the signature) can be given as the index of suitable differential operators, so the index theorem allows us to evaluate these invariants in terms of topological data.

Although the analytical index is usually hard to evaluate directly, it is at least obviously an integer. The topological index is by definition a rational number, but it is usually not at all obvious from the definition that it is also integral. So the Atiyah–Singer index theorem implies some deep integrality properties, as it implies that the topological index is integral.

The index of an elliptic differential operator obviously vanishes if the operator is self adjoint. It also vanishes if the manifold X has odd dimension, though there are pseudodifferential elliptic operators whose index does not vanish in odd dimensions.

Relation to Grothendieck–Riemann–Roch[edit]

The Grothendieck–Riemann–Roch theorem was one of the main motivations behind the index theorem because the index theorem is the counterpart of this theorem in the setting of real manifolds. Now, if there's a map of compact stably almost complex manifolds, then there is a commutative diagram[28]

if is a point, then we recover the statement above. Here is the Grothendieck group of complex vector bundles. This commutative diagram is formally very similar to the GRR theorem because the cohomology groups on the right are replaced by the Chow ring of a smooth variety, and the Grothendieck group on the left is given by the Grothendieck group of algebraic vector bundles.

Extensions of the Atiyah–Singer index theorem[edit]

Teleman index theorem[edit]

Due to (Teleman 1983), (Teleman 1984):

For any abstract elliptic operator (Atiyah 1970) on a closed, oriented, topological manifold, the analytical index equals the topological index.

The proof of this result goes through specific considerations, including the extension of Hodge theory on combinatorial and Lipschitz manifolds (Teleman 1980), (Teleman 1983), the extension of Atiyah–Singer's signature operator to Lipschitz manifolds (Teleman 1983), Kasparov's K-homology (Kasparov 1972) and topological cobordism (Kirby & Siebenmann 1977).

This result shows that the index theorem is not merely a differentiability statement, but rather a topological statement.

Connes–Donaldson–Sullivan–Teleman index theorem[edit]

Due to (Donaldson & Sullivan 1989), (Connes, Sullivan & Teleman 1994):

For any quasiconformal manifold there exists a local construction of the Hirzebruch–Thom characteristic classes.

This theory is based on a signature operator S, defined on middle degree differential forms on even-dimensional quasiconformal manifolds (compare (Donaldson & Sullivan 1989)).

Using topological cobordism and K-homology one may provide a full statement of an index theorem on quasiconformal manifolds (see page 678 of (Connes, Sullivan & Teleman 1994)). The work (Connes, Sullivan & Teleman 1994) "provides local constructions for characteristic classes based on higher dimensional relatives of the measurable Riemann mapping in dimension two and the Yang–Mills theory in dimension four."

These results constitute significant advances along the lines of Singer's program Prospects in Mathematics (Singer 1971). At the same time, they provide, also, an effective construction of the rational Pontrjagin classes on topological manifolds. The paper (Teleman 1985) provides a link between Thom's original construction of the rational Pontrjagin classes (Thom 1956) and index theory.

It is important to mention that the index formula is a topological statement. The obstruction theories due to Milnor, Kervaire, Kirby, Siebenmann, Sullivan, Donaldson show that only a minority of topological manifolds possess differentiable structures and these are not necessarily unique. Sullivan's result on Lipschitz and quasiconformal structures (Sullivan 1979) shows that any topological manifold in dimension different from 4 possesses such a structure which is unique (up to isotopy close to identity).

The quasiconformal structures (Connes, Sullivan & Teleman 1994) and more generally the Lp-structures, p > n(n+1)/2, introduced by M. Hilsum (Hilsum 1999), are the weakest analytical structures on topological manifolds of dimension n for which the index theorem is known to hold.

Other extensions[edit]

Examples[edit]

Chern-Gauss-Bonnet theorem[edit]

Suppose that is a compact oriented manifold of dimension . If we take to be the sum of the even exterior powers of the cotangent bundle, and to be the sum of the odd powers, define , considered as a map from to. Then the analytical index of is the Euler characteristic of the Hodge cohomologyof, and the topological index is the integral of the Euler class over the manifold. The index formula for this operator yields the Chern–Gauss–Bonnet theorem.

The concrete computation goes as follows: according to one variation of the splitting principle, if is a real vector bundle of dimension , in order to prove assertions involving characteristic classes, we may suppose that there are complex line bundles such that . Therefore, we can consider the Chern roots , , .

Using Chern roots as above and the standard properties of the Euler class, we have that . As for the Chern character and the Todd class,[31]

Applying the index theorem,

which is the "topological" version of the Chern-Gauss-Bonnet theorem (the geometric one being obtained by applying the Chern-Weil homomorphism).

Hirzebruch–Riemann–Roch theorem[edit]

Take X to be a complex manifold of (complex) dimension n with a holomorphic vector bundle V. We let the vector bundles E and F be the sums of the bundles of differential forms with coefficients in V of type (0, i) with i even or odd, and we let the differential operator D be the sum

restricted to E.

This derivation of the Hirzebruch–Riemann–Roch theorem is more natural if we use the index theorem for elliptic complexes rather than elliptic operators. We can take the complex to be

with the differential given by . Then the i'th cohomology group is just the coherent cohomology group Hi(X, V), so the analytical index of this complex is the holomorphic Euler characteristicofV:

Since we are dealing with complex bundles, the computation of the topological index is simpler. Using Chern roots and doing similar computations as in the previous example, the Euler class is given by and

Applying the index theorem, we obtain the Hirzebruch-Riemann-Roch theorem:

In fact we get a generalization of it to all complex manifolds: Hirzebruch's proof only worked for projective complex manifolds X.

Hirzebruch signature theorem[edit]

The Hirzebruch signature theorem states that the signature of a compact oriented manifold X of dimension 4k is given by the L genus of the manifold. This follows from the Atiyah–Singer index theorem applied to the following signature operator.

The bundles E and F are given by the +1 and −1 eigenspaces of the operator on the bundle of differential forms of X, that acts on k-forms as times the Hodge star operator. The operator D is the Hodge Laplacian

restricted to E, where d is the Cartan exterior derivative and d* is its adjoint.

The analytic index of D is the signature of the manifold X, and its topological index is the L genus of X, so these are equal.

 genus and Rochlin's theorem[edit]

The  genus is a rational number defined for any manifold, but is in general not an integer. Borel and Hirzebruch showed that it is integral for spin manifolds, and an even integer if in addition the dimension is 4 mod 8. This can be deduced from the index theorem, which implies that the  genus for spin manifolds is the index of a Dirac operator. The extra factor of 2 in dimensions 4 mod 8 comes from the fact that in this case the kernel and cokernel of the Dirac operator have a quaternionic structure, so as complex vector spaces they have even dimensions, so the index is even.

In dimension 4 this result implies Rochlin's theorem that the signature of a 4-dimensional spin manifold is divisible by 16: this follows because in dimension 4 the  genus is minus one eighth of the signature.

Proof techniques[edit]

Pseudodifferential operators[edit]

Pseudodifferential operators can be explained easily in the case of constant coefficient operators on Euclidean space. In this case, constant coefficient differential operators are just the Fourier transforms of multiplication by polynomials, and constant coefficient pseudodifferential operators are just the Fourier transforms of multiplication by more general functions.

Many proofs of the index theorem use pseudodifferential operators rather than differential operators. The reason for this is that for many purposes there are not enough differential operators. For example, a pseudoinverse of an elliptic differential operator of positive order is not a differential operator, but is a pseudodifferential operator. Also, there is a direct correspondence between data representing elements of K(B(X), S(X)) (clutching functions) and symbols of elliptic pseudodifferential operators.

Pseudodifferential operators have an order, which can be any real number or even −∞, and have symbols (which are no longer polynomials on the cotangent space), and elliptic differential operators are those whose symbols are invertible for sufficiently large cotangent vectors. Most versions of the index theorem can be extended from elliptic differential operators to elliptic pseudodifferential operators.

Cobordism[edit]

The initial proof was based on that of the Hirzebruch–Riemann–Roch theorem (1954), and involved cobordism theory and pseudodifferential operators.

The idea of this first proof is roughly as follows. Consider the ring generated by pairs (X, V) where V is a smooth vector bundle on the compact smooth oriented manifold X, with relations that the sum and product of the ring on these generators are given by disjoint union and product of manifolds (with the obvious operations on the vector bundles), and any boundary of a manifold with vector bundle is 0. This is similar to the cobordism ring of oriented manifolds, except that the manifolds also have a vector bundle. The topological and analytical indices are both reinterpreted as functions from this ring to the integers. Then one checks that these two functions are in fact both ring homomorphisms. In order to prove they are the same, it is then only necessary to check they are the same on a set of generators of this ring. Thom's cobordism theory gives a set of generators; for example, complex vector spaces with the trivial bundle together with certain bundles over even dimensional spheres. So the index theorem can be proved by checking it on these particularly simple cases.

K-theory[edit]

Atiyah and Singer's first published proof used K-theory rather than cobordism. If i is any inclusion of compact manifolds from XtoY, they defined a 'pushforward' operation i! on elliptic operators of X to elliptic operators of Y that preserves the index. By taking Y to be some sphere that X embeds in, this reduces the index theorem to the case of spheres. If Y is a sphere and X is some point embedded in Y, then any elliptic operator on Y is the image under i! of some elliptic operator on the point. This reduces the index theorem to the case of a point, where it is trivial.

Heat equation[edit]

Atiyah, Bott, and Patodi (1973) gave a new proof of the index theorem using the heat equation, see e.g. Berline, Getzler & Vergne (1992). The proof is also published in (Melrose 1993) and (Gilkey 1994).

IfD is a differential operator with adjoint D*, then D*D and DD* are self adjoint operators whose non-zero eigenvalues have the same multiplicities. However their zero eigenspaces may have different multiplicities, as these multiplicities are the dimensions of the kernels of D and D*. Therefore, the index of D is given by

for any positive t. The right hand side is given by the trace of the difference of the kernels of two heat operators. These have an asymptotic expansion for small positive t, which can be used to evaluate the limit as t tends to 0, giving a proof of the Atiyah–Singer index theorem. The asymptotic expansions for small t appear very complicated, but invariant theory shows that there are huge cancellations between the terms, which makes it possible to find the leading terms explicitly. These cancellations were later explained using supersymmetry.

See also[edit]

Citations[edit]

  • ^ Hamilton 2020, p. 11.
  • ^ Gel'fand 1960.
  • ^ Palais 1965.
  • ^ Cartan-Schwartz 1965.
  • ^ Atiyah & Singer 1968a.
  • ^ Atiyah & Singer (1968a); Atiyah & Singer (1968b); Atiyah & Singer (1971a); Atiyah & Singer (1971b).
  • ^ Novikov 1965.
  • ^ Kirby & Siebenmann 1969.
  • ^ Thom 1956.
  • ^ Atiyah 1970.
  • ^ Singer 1971.
  • ^ Kasparov 1972.
  • ^ Atiyah, Bott & Patodi 1973.
  • ^ Melrose 1993.
  • ^ Sullivan 1979.
  • ^ Getzler 1983.
  • ^ Witten 1982.
  • ^ Teleman 1983.
  • ^ Teleman 1984.
  • ^ Connes 1986.
  • ^ Donaldson & Sullivan 1989.
  • ^ Connes & Moscovici 1990.
  • ^ Connes, Sullivan & Teleman 1994.
  • ^ Shanahan, P. (1978), The Atiyah-Singer Index Theorem, Lecture Notes in Mathematics, vol. 638, Springer, CiteSeerX 10.1.1.193.9222, doi:10.1007/BFb0068264, ISBN 978-0-387-08660-6
  • ^ Lawson, H. Blane; Michelsohn, Marie-Louise (1989), Spin Geometry, Princeton University Press, ISBN 0-691-08542-0
  • ^ "algebraic topology - How to understand the Todd class?". Mathematics Stack Exchange. Retrieved 2021-02-05.
  • ^ Index Theorems on Open Spaces
  • ^ Some Remarks on the Paper of Callias
  • ^ Nakahara, Mikio (2003), Geometry, topology and physics, Institute of Physics Publishing, ISBN 0-7503-0606-8
  • References[edit]

    The papers by Atiyah are reprinted in volumes 3 and 4 of his collected works, (Atiyah 1988a, 1988b)

    • Atiyah, M. F. (1970), "Global Theory of Elliptic Operators", Proc. Int. Conf. on Functional Analysis and Related Topics (Tokyo, 1969), University of Tokio, Zbl 0193.43601
  • Atiyah, M. F. (1976), "Elliptic operators, discrete groups and von Neumann algebras", Colloque "Analyse et Topologie" en l'Honneur de Henri Cartan (Orsay, 1974), Asterisque, vol. 32–33, Soc. Math. France, Paris, pp. 43–72, MR 0420729
  • Atiyah, M. F.; Segal, G. B. (1968), "The Index of Elliptic Operators: II", Annals of Mathematics, Second Series, 87 (3): 531–545, doi:10.2307/1970716, JSTOR 1970716 This reformulates the result as a sort of Lefschetz fixed-point theorem, using equivariant K-theory.
  • Atiyah, Michael F.; Singer, Isadore M. (1963), "The Index of Elliptic Operators on Compact Manifolds", Bull. Amer. Math. Soc., 69 (3): 422–433, doi:10.1090/S0002-9904-1963-10957-X An announcement of the index theorem.
  • Atiyah, Michael F.; Singer, Isadore M. (1968a), "The Index of Elliptic Operators I", Annals of Mathematics, 87 (3): 484–530, doi:10.2307/1970715, JSTOR 1970715 This gives a proof using K-theory instead of cohomology.
  • Atiyah, Michael F.; Singer, Isadore M. (1968b), "The Index of Elliptic Operators III", Annals of Mathematics, Second Series, 87 (3): 546–604, doi:10.2307/1970717, JSTOR 1970717 This paper shows how to convert from the K-theory version to a version using cohomology.
  • Atiyah, Michael F.; Singer, Isadore M. (1971a), "The Index of Elliptic Operators IV", Annals of Mathematics, Second Series, 93 (1): 119–138, doi:10.2307/1970756, JSTOR 1970756 This paper studies families of elliptic operators, where the index is now an element of the K-theory of the space parametrizing the family.
  • Atiyah, Michael F.; Singer, Isadore M. (1971b), "The Index of Elliptic Operators V", Annals of Mathematics, Second Series, 93 (1): 139–149, doi:10.2307/1970757, JSTOR 1970757. This studies families of real (rather than complex) elliptic operators, when one can sometimes squeeze out a little extra information.
  • Atiyah, M. F.; Bott, R. (1966), "A Lefschetz Fixed Point Formula for Elliptic Differential Operators", Bull. Am. Math. Soc., 72 (2): 245–50, doi:10.1090/S0002-9904-1966-11483-0. This states a theorem calculating the Lefschetz number of an endomorphism of an elliptic complex.
  • Atiyah, M. F.; Bott, R. (1967), "A Lefschetz Fixed Point Formula for Elliptic Complexes: I", Annals of Mathematics, Second series, 86 (2): 374–407, doi:10.2307/1970694, JSTOR 1970694 and Atiyah, M. F.; Bott, R. (1968), "A Lefschetz Fixed Point Formula for Elliptic Complexes: II. Applications", Annals of Mathematics, Second Series, 88 (3): 451–491, doi:10.2307/1970721, JSTOR 1970721 These give the proofs and some applications of the results announced in the previous paper.
  • Atiyah, M.; Bott, R.; Patodi, V. K. (1973), "On the heat equation and the index theorem", Invent. Math., 19 (4): 279–330, Bibcode:1973InMat..19..279A, doi:10.1007/BF01425417, MR 0650828, S2CID 115700319. Atiyah, M.; Bott, R.; Patodi, V. K. (1975), "Errata", Invent. Math., 28 (3): 277–280, Bibcode:1975InMat..28..277A, doi:10.1007/BF01425562, MR 0650829
  • Atiyah, Michael; Schmid, Wilfried (1977), "A geometric construction of the discrete series for semisimple Lie groups", Invent. Math., 42: 1–62, Bibcode:1977InMat..42....1A, doi:10.1007/BF01389783, MR 0463358, S2CID 189831012, Atiyah, Michael; Schmid, Wilfried (1979), "Erratum", Invent. Math., 54 (2): 189–192, Bibcode:1979InMat..54..189A, doi:10.1007/BF01408936, MR 0550183
  • Atiyah, Michael (1988a), Collected works. Vol. 3. Index theory: 1, Oxford Science Publications, New York: The Clarendon Press, Oxford University Press, ISBN 978-0-19-853277-4, MR 0951894
  • Atiyah, Michael (1988b), Collected works. Vol. 4. Index theory: 2, Oxford Science Publications, New York: The Clarendon Press, Oxford University Press, ISBN 978-0-19-853278-1, MR 0951895
  • Baum, P.; Fulton, W.; Macpherson, R. (1979), "Riemann-Roch for singular varieties", Acta Mathematica, 143: 155–191, doi:10.1007/BF02684299, S2CID 83458307, Zbl 0332.14003
  • Berline, Nicole; Getzler, Ezra; Vergne, Michèle (1992), Heat Kernels and Dirac Operators, Berlin: Springer, ISBN 978-3-540-53340-5 This gives an elementary proof of the index theorem for the Dirac operator, using the heat equation and supersymmetry.
  • Bismut, Jean-Michel (1984), "The Atiyah–Singer Theorems: A Probabilistic Approach. I. The index theorem", J. Funct. Anal., 57: 56–99, doi:10.1016/0022-1236(84)90101-0 Bismut proves the theorem for elliptic complexes using probabilistic methods, rather than heat equation methods.
  • Cartan-Schwartz (1965), Séminaire Henri Cartan. Théoreme d'Atiyah-Singer sur l'indice d'un opérateur différentiel elliptique. 16 annee: 1963/64 dirigee par Henri Cartan et Laurent Schwartz. Fasc. 1; Fasc. 2. (French), École Normale Supérieure, Secrétariat mathématique, Paris, Zbl 0149.41102
  • Connes, A. (1986), "Non-commutative differential geometry", Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 62: 257–360, doi:10.1007/BF02698807, S2CID 122740195, Zbl 0592.46056
  • Connes, A. (1994), Noncommutative Geometry, San Diego: Academic Press, ISBN 978-0-12-185860-5, Zbl 0818.46076
  • Connes, A.; Moscovici, H. (1990), "Cyclic cohomology, the Novikov conjecture and hyperbolic groups" (PDF), Topology, 29 (3): 345–388, doi:10.1016/0040-9383(90)90003-3, Zbl 0759.58047
  • Connes, A.; Sullivan, D.; Teleman, N. (1994), "Quasiconformal mappings, operators on Hilbert space and local formulae for characteristic classes", Topology, 33 (4): 663–681, doi:10.1016/0040-9383(94)90003-5, Zbl 0840.57013
  • Donaldson, S.K.; Sullivan, D. (1989), "Quasiconformal 4-manifolds", Acta Mathematica, 163: 181–252, doi:10.1007/BF02392736, Zbl 0704.57008
  • Gel'fand, I. M. (1960), "On elliptic equations", Russ. Math. Surv., 15 (3): 113–123, Bibcode:1960RuMaS..15..113G, doi:10.1070/rm1960v015n03ABEH004094 reprinted in volume 1 of his collected works, p. 65–75, ISBN 0-387-13619-3. On page 120 Gel'fand suggests that the index of an elliptic operator should be expressible in terms of topological data.
  • Getzler, E. (1983), "Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem", Commun. Math. Phys., 92 (2): 163–178, Bibcode:1983CMaPh..92..163G, doi:10.1007/BF01210843, S2CID 55438589
  • Getzler, E. (1988), "A short proof of the local Atiyah–Singer index theorem", Topology, 25: 111–117, doi:10.1016/0040-9383(86)90008-X
  • Gilkey, Peter B. (1994), Invariance Theory, the Heat Equation, and the Atiyah–Singer Theorem, CRC Press, ISBN 978-0-8493-7874-4 Free online textbook that proves the Atiyah–Singer theorem with a heat equation approach
  • Hamilton, M. J. D. (2020). "The Higgs boson for mathematicians. Lecture notes on gauge theory and symmetry breaking". arXiv:1512.02632 [math.DG].
  • Kayani, U. (2020). "Dynamical supersymmetry enhancement of black hole horizons". arXiv:1910.01080 [hep-th].
  • Higson, Nigel; Roe, John (2000), Analytic K-homology, Oxford University Press, ISBN 9780191589201
  • Hilsum, M. (1999), "Structures riemaniennes LpetK-homologie", Annals of Mathematics, 149 (3): 1007–1022, arXiv:math/9905210, doi:10.2307/121079, JSTOR 121079, S2CID 119708566
  • Kasparov, G.G. (1972), "Topological invariance of elliptic operators, I: K-homology", Math. USSR Izvestija (Engl. Transl.), 9 (4): 751–792, Bibcode:1975IzMat...9..751K, doi:10.1070/IM1975v009n04ABEH001497
  • Kirby, R.; Siebenmann, L.C. (1969), "On the triangulation of manifolds and the Hauptvermutung", Bull. Amer. Math. Soc., 75 (4): 742–749, doi:10.1090/S0002-9904-1969-12271-8
  • Kirby, R.; Siebenmann, L.C. (1977), Foundational Essays on Topological Manifolds, Smoothings and Triangulations, Annals of Mathematics Studies in Mathematics, vol. 88, Princeton: Princeton University Press and Tokio University Press
  • Lawson, H. Blane; Michelsohn, Marie-Louise (1989), Spin Geometry, Princeton University Press, ISBN 0-691-08542-0
  • Melrose, Richard B. (1993), The Atiyah–Patodi–Singer Index Theorem, Wellesley, Mass.: Peters, ISBN 978-1-56881-002-7 Free online textbook.
  • Novikov, S.P. (1965), "Topological invariance of the rational Pontrjagin classes" (PDF), Doklady Akademii Nauk SSSR, 163: 298–300
  • Palais, Richard S. (1965), Seminar on the Atiyah–Singer Index Theorem, Annals of Mathematics Studies, vol. 57, S.l.: Princeton Univ Press, ISBN 978-0-691-08031-4 This describes the original proof of the theorem (Atiyah and Singer never published their original proof themselves, but only improved versions of it.)
  • Shanahan, P. (1978), The Atiyah-Singer Index Theorem, Lecture Notes in Mathematics, vol. 638, Springer, CiteSeerX 10.1.1.193.9222, doi:10.1007/BFb0068264, ISBN 978-0-387-08660-6
  • Singer, I.M. (1971), "Future extensions of index theory and elliptic operators", Prospects in Mathematics, Annals of Mathematics Studies in Mathematics, vol. 70, pp. 171–185
  • Sullivan, D. (1979), "Hyperbolic geometry and homeomorphisms", J.C. Candrell, "Geometric Topology", Proc. Georgia Topology Conf. Athens, Georgia, 1977, New York: Academic Press, pp. 543–595, ISBN 978-0-12-158860-1, Zbl 0478.57007
  • Sullivan, D.; Teleman, N. (1983), "An analytic proof of Novikov's theorem on rational Pontrjagin classes", Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 58, Paris: 291–293, doi:10.1007/BF02953773, S2CID 8348213, Zbl 0531.58045
  • Teleman, N. (1980), "Combinatorial Hodge theory and signature operator", Inventiones Mathematicae, 61 (3): 227–249, Bibcode:1980InMat..61..227T, doi:10.1007/BF01390066, S2CID 122247909
  • Teleman, N. (1983), "The index of signature operators on Lipschitz manifolds", Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 58: 251–290, doi:10.1007/BF02953772, S2CID 121497293, Zbl 0531.58044
  • Teleman, N. (1984), "The index theorem on topological manifolds", Acta Mathematica, 153: 117–152, doi:10.1007/BF02392376, Zbl 0547.58036
  • Teleman, N. (1985), "Transversality and the index theorem", Integral Equations and Operator Theory, 8 (5): 693–719, doi:10.1007/BF01201710, S2CID 121137053
  • Thom, R. (1956), "Les classes caractéristiques de Pontrjagin de variétés triangulées", Symp. Int. Top. Alg. Mexico, pp. 54–67
  • Witten, Edward (1982), "Supersymmetry and Morse theory", J. Diff. Geom., 17 (4): 661–692, doi:10.4310/jdg/1214437492, MR 0683171
  • Shing-Tung Yau, ed. (2009) [First published in 2005], The Founders of Index Theory (2nd ed.), Somerville, Mass.: International Press of Boston, ISBN 978-1571461377 - Personal accounts on Atiyah, Bott, Hirzebruch and Singer.
  • External links[edit]

    Links on the theory[edit]

    Links of interviews[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Atiyah–Singer_index_theorem&oldid=1226362248"

    Categories: 
    Differential operators
    Elliptic partial differential equations
    Theorems in differential geometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    CS1: long volume value
    CS1 maint: bot: original URL status unknown
     



    This page was last edited on 30 May 2024, at 04:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki