Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Hyperbolic laws of cosines  





3 Hyperbolic law of Haversines  





4 Relativistic velocity addition via hyperbolic law of cosines  





5 See also  





6 References  



6.1  Bibliography  







7 External links  














Hyperbolic law of cosines






Español
Français
Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inhyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosinesinspherical trigonometry.[1] It can also be related to the relativistic velocity addition formula.[2][3]

History[edit]

Describing relations of hyperbolic geometry, Franz Taurinus showed in 1826[4] that the spherical law of cosines can be related to spheres of imaginary radius, thus he arrived at the hyperbolic law of cosines in the form:[5]

which was also shown by Nikolai Lobachevsky (1830):[6]

Ferdinand Minding gave it in relation to surfaces of constant negative curvature:[7]

as did Delfino Codazzi in 1857:[8]

The relation to relativity using rapidity was shown by Arnold Sommerfeld in 1909[9] and Vladimir Varićak in 1910.[10]

Hyperbolic laws of cosines[edit]

Take a hyperbolic plane whose Gaussian curvatureis. Given a hyperbolic triangle with angles and side lengths , , and , the following two rules hold. The first is an analogue of Euclidean law of cosines, expressing the length of one side in terms of the other two and the angle between the latter:

(1)

The second law has no Euclidean analogue, since it expresses the fact that lengths of sides of a hyperbolic triangle are determined by the interior angles:

Houzel indicates that the hyperbolic law of cosines implies the angle of parallelism in the case of an ideal hyperbolic triangle:[11]

When that is when the vertex A is rejected to infinity and the sides BA and CA are "parallel", the first member equals 1; let us suppose in addition that so that and The angle at B takes a value β given by this angle was later called "angle of parallelism" and Lobachevsky noted it by "F(a)" or "Π(a)".

Hyperbolic law of Haversines[edit]

In cases where is small, and being solved for, the numerical precision of the standard form of the hyperbolic law of cosines will drop due to rounding errors, for exactly the same reason it does in the Spherical law of cosines. The hyperbolic version of the law of haversines can prove useful in this case:

Relativistic velocity addition via hyperbolic law of cosines[edit]

Setting in (1), and by using hyperbolic identities in terms of the hyperbolic tangent, the hyperbolic law of cosines can be written:

(2)

In comparison, the velocity addition formulasofspecial relativity for the x and y-directions as well as under an arbitrary angle , where v is the relative velocity between two inertial frames, u the velocity of another object or frame, and c the speed of light, is given by[2]

It turns out that this result corresponds to the hyperbolic law of cosines - by identifying with relativistic rapidities the equations in (2) assume the form:[10][3]

See also[edit]

References[edit]

  1. ^ Anderson (2005); Reid & Szendröi (2005), §3.10 Hyperbolic triangles and trig; Reiman (1999).
  • ^ a b Pauli (1921), p. 561.
  • ^ a b Barrett (2019).
  • ^ Taurinus (1826), p. 66
  • ^ Bonola (1912), p. 79; Gray (1979), p. 242.
  • ^ Lobachevsky (1898), pp. 21–65; Bonola (1912), p. 89; Gray (1979), p. 244.
  • ^ Minding (1840); Bonola (1912), p. 137; Gray (1979), p. 246.
  • ^ Codazzi (1857).
  • ^ Sommerfeld (1909).
  • ^ a b Varičak (1912)
  • ^ Houzel (1992), p. 8.
  • Bibliography[edit]

    • Anderson, James W. (2005). Hyperbolic Geometry (2nd ed.). London: Springer. ISBN 1-85233-934-9.
  • Barrett, J. F. (2019) [2006]. The Hyperbolic Theory of Relativity. arXiv:1102.0462.
  • Bonola, R. (1912). Non-Euclidean Geometry: A Critical and Historical Study of Its Development. Chicago: Open Court.
  • Codazzi, D. (1857). "Intorno alle superficie le quali hanno costante il prodotto de due raggi di curvatura" [About surfaces which have constant the product of two radii of curvature]. Ann. Sci. Mat. Fis. (in Italian). 8: 351–354.
  • Gray, J. (1979). "Non-Euclidean Geometry: A Re-interpretation". Historia Mathematica. 6 (3): 236–258. doi:10.1016/0315-0860(79)90124-1.
  • Houzel, Christian (1992). "The Birth of Non-Euclidean Geometry". In Boi, L.; Flament, D.; Salanskis, J. M. (eds.). 1830–1930: A Century of Geometry: Epistemology, History and Mathematics. Lecture Notes in Physics. Vol. 402. Springer-Verlag. pp. 3–21. ISBN 3-540-55408-4.
  • Lobachevsky, N. (1898) [1830].『Über die Anfangsgründe der Geometrie』[On the beginnings of geometry]. In Engel, F.; Stäckel, P. (eds.). Zwei geometrische Abhandlungen [Two Geometric Treatises] (in German). Leipzig: Teubner. pp. 21–65.
  • Minding, F. (1840). "Beiträge zur Theorie der kürzesten Linien auf krummen Flächen". Journal für die reine und angewandte Mathematik. 20: 324.
  • Pauli, Wolfgang (1921). "Die Relativitätstheorie" [The Theory of Relativity]. Encyclopädie der mathematischen Wissenschaften (in German). 5 (2): 539–776.
  • Pauli, Wolfgang (1981) [1921]. "Theory of Relativity". Fundamental Theories of Physics. 165. Dover Publications. ISBN 0-486-64152-X.
  • Reid, Miles; Szendröi, Balázs (2005). Geometry and Topology. Cambridge University Press. §3.10 Hyperbolic triangles and trig. ISBN 0-521-61325-6. MR 2194744.
  • Reiman, István (1999). Geometria és határterületei (in Hungarian). Szalay Könyvkiadó és Kereskedőház Kft. ISBN 978-963-237-012-5.
  • Sommerfeld, A. (1909).『Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie』[On the Composition of Velocities in the Theory of Relativity]. Verh. Dtsch. Phys. Ges. (in German). 21: 577–582.
  • Taurinus, Franz Adolph (1826). Geometriae prima elementa. Recensuit et novas observationes adjecit [The first elements of geometry. Reviewed and new added observations] (in Latin). Köln: Bachem. p. 66.
  • Varičak, Vladimir (1912). "Über die nichteuklidische Interpretation der Relativtheorie"  [On the Non-Euclidean Interpretation of the Theory of Relativity]. Jahresbericht der Deutschen Mathematiker-Vereinigung (in German). 21: 103–127.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Hyperbolic_law_of_cosines&oldid=1223326527"

    Categories: 
    Hyperbolic geometry
    Special relativity
    Hidden categories: 
    CS1 Italian-language sources (it)
    CS1 German-language sources (de)
    CS1 Hungarian-language sources (hu)
    CS1 Latin-language sources (la)
     



    This page was last edited on 11 May 2024, at 10:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki