Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proofs  



1.1  First proof  





1.2  Second proof  





1.3  Third proof  







2 Rearrangements  





3 Planar limit: small angles  





4 History  





5 See also  





6 Notes  














Spherical law of cosines






Español
Esperanto
עברית
Română
Русский
Svenska
Українська
Tiếng Vit
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inspherical trigonometry, the law of cosines (also called the cosine rule for sides[1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry.

Spherical triangle solved by the law of cosines.

Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from utov), b (from utow), and c (from vtow), and the angle of the corner opposite cisC, then the (first) spherical law of cosines states:[2][1]

Since this is a unit sphere, the lengths a, b, and c are simply equal to the angles (inradians) subtended by those sides from the center of the sphere. (For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended angles). As a special case, for C = π/2, then cos C = 0, and one obtains the spherical analogue of the Pythagorean theorem:

If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable.[3]

A variation on the law of cosines, the second spherical law of cosines,[4] (also called the cosine rule for angles[1]) states:

where A and B are the angles of the corners opposite to sides a and b, respectively. It can be obtained from consideration of a spherical triangle dual to the given one.

Proofs[edit]

First proof[edit]

Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. The angles and distances do not change if the coordinate system is rotated, so we can rotate the coordinate system so that is at the north pole and is somewhere on the prime meridian (longitude of 0). With this rotation, the spherical coordinates for are where θ is the angle measured from the north pole not from the equator, and the spherical coordinates for are The Cartesian coordinates for are and the Cartesian coordinates for are The value of is the dot product of the two Cartesian vectors, which is

Second proof[edit]

Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. We have u · u = 1, v · w = cos c, u · v = cos a, and u · w = cos b. The vectors u × v and u × w have lengths sin a and sin b respectively and the angle between them is C, so

sin a sin b cos C = (u × v) · (u × w) = (u · u)(v · w) − (u · v)(u · w) = cos c − cos a cos b,

using cross products, dot products, and the Binet–Cauchy identity (p × q) · (r × s) = (p · r)(q · s) − (p · s)(q · r).

Third proof[edit]

Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. Consider the following rotational sequence where we first rotate the vector vtou by an angle followed by another rotation of vector utow by an angle after which we rotate the vector w back to v by an angle The composition of these three rotations will form an identity transform.[clarification needed] That is, the composite rotation maps the point v to itself. These three rotational operations can be represented by quaternions:

where and are the unit vectors representing the axes of rotations, as defined by the right-hand rule, respectively. The composition of these three rotations is unity, Right multiplying both sides by conjugates we have where and This gives us the identity[5][6]

The quaternion product on the right-hand side of this identity is given by

Equating the scalar parts on both sides of the identity, we have

Here Since this identity is valid for any arc angles, suppressing the halves, we have

We can also recover the sine law by first noting that and then equating the vector parts on both sides of the identity as

The vector is orthogonal to both the vectors and and as such Taking dot product with respect to on both sides, and suppressing the halves, we have Now and so we have Dividing each side by we have

Since the right-hand side of the above expression is unchanged by cyclic permutation, we have

Rearrangements[edit]

The first and second spherical laws of cosines can be rearranged to put the sides (a, b, c) and angles (A, B, C) on opposite sides of the equations:

Planar limit: small angles[edit]

For small spherical triangles, i.e. for small a, b, and c, the spherical law of cosines is approximately the same as the ordinary planar law of cosines,

To prove this, we will use the small-angle approximation obtained from the Maclaurin series for the cosine and sine functions:

Substituting these expressions into the spherical law of cosines nets:

or after simplifying:

The big O terms for a and b are dominated by O(a4) + O(b4)asa and b get small, so we can write this last expression as:

History[edit]

Something equivalent to the spherical law of cosines was used (but not stated in general) by al-Khwārizmī (9th century), al-Battānī (9th century), and Nīlakaṇṭha (15th century).[7]

See also[edit]

Notes[edit]

  1. ^ a b c W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
  • ^ Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
  • ^ R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
  • ^ Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft. p. 83.
  • ^ Brand, Louis (1947). "§186 Great Circle Arccs". Vector and Tensor Analysis. Wiley. pp. 416–417.
  • ^ Kuipers, Jack B. (1999). "§10 Spherical Trignometry". Quaternions and Rotation Sequences. Princeton University Press. pp. 235–255.
  • ^ Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98. Bibcode:2012hmfa.book.....V.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Spherical_law_of_cosines&oldid=1207122543"

    Categories: 
    Spherical trigonometry
    Theorems in geometry
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from January 2024
    Articles containing proofs
     



    This page was last edited on 14 February 2024, at 01:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki