Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Proof using integration  



1.1  Proof using Laplace's method  







2 Proof using Euler's infinite product for the sine function  





3 Relation to Stirling's approximation  





4 Derivative of the Riemann zeta function at zero  





5 See also  





6 Notes  





7 External links  














Wallis product






العربية
Català
Deutsch
Español
Euskara
فارسی
Français

Հայերեն
Italiano
עברית
Қазақша
Nederlands

Polski
Português
Română
Русский
Suomi
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π. Sn is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail)

Inmathematics, the Wallis product for π, published in 1656 by John Wallis,[1] states that

Proof using integration[edit]

Wallis derived this infinite product using interpolation, though his method is not regarded as rigorous. A modern derivation can be found by examining for even and odd values of , and noting that for large , increasing by 1 results in a change that becomes ever smaller as increases. Let[2]

(This is a form of Wallis' integrals.) Integrate by parts:

Now, we make two variable substitutions for convenience to obtain:

We obtain values for and for later use.

Now, we calculate for even values by repeatedly applying the recurrence relation result from the integration by parts. Eventually, we end get down to , which we have calculated.

Repeating the process for odd values ,

We make the following observation, based on the fact that

Dividing by :

, where the equality comes from our recurrence relation.

By the squeeze theorem,

Proof using Laplace's method[edit]

See the main page on Gaussian integral.

Proof using Euler's infinite product for the sine function[edit]

While the proof above is typically featured in modern calculus textbooks, the Wallis product is, in retrospect, an easy corollary of the later Euler infinite product for the sine function.

Let :

   [1]

Relation to Stirling's approximation[edit]

Stirling's approximation for the factorial function asserts that

Consider now the finite approximations to the Wallis product, obtained by taking the first terms in the product

where can be written as

Substituting Stirling's approximation in this expression (both for and ) one can deduce (after a short calculation) that converges to as.

Derivative of the Riemann zeta function at zero[edit]

The Riemann zeta function and the Dirichlet eta function can be defined:[1]

Applying an Euler transform to the latter series, the following is obtained:

See also[edit]

Notes[edit]

  1. ^ a b c "Wallis Formula".
  • ^ "Integrating Powers and Product of Sines and Cosines: Challenging Problems".
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Wallis_product&oldid=1234977832"

    Categories: 
    Pi algorithms
    Infinite products
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles containing proofs
     



    This page was last edited on 17 July 2024, at 03:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki