Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Intelligent vehicular ad hoc network







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Intelligent vehicular ad hoc networks (InVANETs) use WiFi IEEE 802.11p (WAVE standard) and effective communication between vehicles with dynamic mobility. Effective measures such as media communication between vehicles can be enabled as well methods to track automotive vehicles. InVANET is not foreseen to replace current mobile (cellular phone) communication standards.

"Older" designs within the IEEE 802.11 scope may refer just to IEEE 802.11b/g. More recent designs refer to the latest issues of IEEE 802.11p (WAVE, draft status). Due to inherent lag times, only the latter one in the IEEE 802.11 scope is capable of coping with the typical dynamics of vehicle operation.

Automotive vehicular information can be viewed on electronic maps using the Internet or specialized software. The advantage of WiFi based navigation system function is that it can effectively locate a vehicle which is inside big campuses like universities, airports, and tunnels. InVANET can be used as part of automotive electronics, which has to identify an optimally minimal path for navigation with minimal traffic intensity. The system can also be used as a city guide to locate and identify landmarks in a new city.

Communication capabilities in vehicles are the basis of an envisioned InVANET or intelligent transportation systems (ITS). Vehicles are enabled to communicate among themselves (vehicle-to-vehicle, V2V) and via roadside access points (vehicle-to-roadside, V2R) also called as Road Side Units (RSUs). Vehicular communication is expected to contribute to safer and more efficient roads by providing timely information to drivers, and also to make travel more convenient. The integration of V2V and V2R communication is beneficial because V2R provides better service sparse networks and long-distance communication, whereas V2V enables direct communication for small to medium distances/areas and at locations where roadside access points are not available.

Providing vehicle–vehicle and vehicle–roadside communication can considerably improve traffic safety and comfort of driving and traveling. For communication in vehicular ad hoc networks, position-based routing has emerged as a promising candidate. For Internet access, Mobile IPv6 is a widely accepted solution to provide session continuity and reachability to the Internet for mobile nodes. While integrated solutions for usage of Mobile IPv6 in (non-vehicular) mobile ad hoc networks exist, a solution has been proposed that, built upon a Mobile IPv6 proxy-based architecture, selects the optimal communication mode (direct in-vehicle, vehicle–vehicle, and vehicle–roadside communication) and provides dynamic switching between vehicle–vehicle and vehicle–roadside communication mode during a communication session in case that more than one communication mode is simultaneously available.

See also[edit]

Research fora[edit]

References[edit]

Ad hoc network books:

Intelligent ad hoc vehicular network papers (Overview):

Intelligent ad hoc vehicular network architecture:

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Intelligent_vehicular_ad_hoc_network&oldid=1131228425"

Category: 
Wireless networking
Hidden category: 
CS1 maint: multiple names: authors list
 



This page was last edited on 3 January 2023, at 04:35 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki