Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Objectives  





3 See also  





4 References  














Interior Characterization of Europa using Magnetometry







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


ICEMAG
OperatorNASA
ManufacturerJet Propulsion Laboratory
Instrument typeMagnetometer
Functioninternal planetary characterization and exosphere activity
Mission durationCruise: 3-6 years
Science phase: ≥ 3 years
Host spacecraft
SpacecraftEuropa Clipper
OperatorNASA
Launch date≈ 2025 (instrument cancelled)[1]
RocketSLS
Launch siteKennedy Space Center

The Interior Characterization of Europa using Magnetometry (ICEMAG) is a multi-frequency magnetometer that was proposed to be flown on board the Europa Clipper mission to Jupiter's moon Europa, but its inclusion was cancelled in March 2019.[1] Magnetic induction is a powerful tool for probing the subsurface and determine Europa's ocean depth, salinity, and ice shell thickness, as well as detecting erupting plume activity.

The Principal Investigator is Carol Raymond, at NASA's Jet Propulsion Laboratory.[2]

On March 5, 2019, NASA's Associate Administrator for the Science Mission Directorate, Thomas Zurbuchen, announced that ICEMAG would no longer be part of the Europa Clipper mission, primarily citing recurring cost increases (over three times the original cost put forward in the proposal).[3] A less complex magnetometer will be included on the mission.[3]

Overview[edit]

Magnetic induction is a powerful tool for probing the subsurface. ICEMAG would have observed the magnetic field near Europa with greatly enhanced sensitivity compared to a similar instrument carried by NASA's Galileo spacecraft, which orbited Jupiter from 1995 to 2003. The magnetic field induced in Europa over many frequencies would reveal the ocean depth and ice shell thickness, especially when combined with the REASON ice penetrating radar data and the PIMS instrument. Knowledge of the ocean properties would help understand Europa's evolution and allow evaluation of processes that have cycled material between the depths and the surface, and would help assess the ocean's potential habitability.[4][5] ICEMAG would have helped in understanding not only what Europa is made of, but also the processes that link the ocean to the surface, and how the system works.[4]

ICEMAG was to utilize fluxgate magnetic field sensors[6] and helium sensors in an integrated magnetic measurement system.[7] Electromagnetic waves between 10−2 to 1 hertz could reveal localized mass flow of ions arising from plumes and the atmosphere; that is, localized transient currents indicate plume activity.[2] In general, ICEMAG data would have combined synergistically with other data sets to improve knowledge of interior properties and exosphere activity.

The instrument was put under review in the summer of 2018 due to out of control costs. By March 6, 2019, the instrument was cancelled in favor of finding a more affordable, less complex replacement. The cause of the cost increases was traced to the helium sensors used to detect the direction and strength of a magnetic field.[1]

Objectives[edit]

The objectives of the ICEMAG investigation were to be:[2]

See also[edit]

References[edit]

  1. ^ a b c Foust, Jeff (March 6, 2019). "NASA to replace Europa Clipper instrument". SpaceNews. Retrieved March 6, 2019.
  • ^ a b c Raymond, Carol; et al. (August 24, 2015). "ICEMAG - Interior Characterization of Europa Using Magnetometry" (PDF). Outer Planets Assessment Group.
  • ^ a b Zurbuchen, Thomas H. (March 5, 2019). "ICEMAG Update on Europa Clipper". SpaceRef. NASA. Retrieved March 6, 2019.
  • ^ a b Dyches, Preston (May 27, 2015). "Europa Mission to Probe Magnetic Field and Chemistry". NASA News. Retrieved March 7, 2019.
  • ^ Tribou, Richard (June 19, 2015). "NASA going to Jupiter moon Europa to hunt for water, keys to life". Orlando Sentinel. Orlando, FL. Archived from the original on November 13, 2017. Retrieved November 12, 2017.
  • ^ "Fluxgate Magnetometer | ELFIN". Electron Losses and Fields Investigation. UCLA. May 6, 2016. Archived from the original on June 16, 2018. Retrieved March 7, 2019.
  • ^ Interior Characterization of Europa using Magnetometry (ICEMAG): Probing the Europan Ocean and Exosphere. Raymond, C. A.; Jia, X.; Joy, S. P.; Khurana, K. K.; Murphy, N.; Russell, C. T.; Strangeway, R. J.; Weiss, B. P. American Geophysical Union, Fall Meeting 2015, abstract #P13E-08.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Interior_Characterization_of_Europa_using_Magnetometry&oldid=1144047207"

    Categories: 
    Spacecraft instruments
    Europa (moon)
    Europa Clipper
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 11 March 2023, at 14:28 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki