Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Principle and operation  





3 Objectives  





4 See also  





5 References  














Raman Laser Spectrometer







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Raman Laser Spectrometer
OperatorEuropean Space Agency
ManufacturerSpanish Astrobiology Center (CSIC-INTA)
Instrument typeRaman spectrometer
Functionmineralogical composition
Mission duration≥ 7 months[1]
WebsiteExoMars Rover Instrument Suite
Host spacecraft
SpacecraftRosalind Franklin rover
OperatorEuropean Space Agency
Launch dateNET 2028

Raman Laser Spectrometer (RLS) is a miniature Raman spectrometer that is part of the science payload on board the European Space Agency's Rosalind Franklin rover,[2] tasked to search for biosignatures and biomarkers on Mars. The rover is planned to be launched not earlier than 2028 and land on Mars in 2029.

Raman spectroscopy is a technique employed to identify mineral phases produced by water-related processes.[3][4][5] RLS will help to identify organic compounds and search for microbial life by identifying the mineral products and indicators of biologic activities. RLS will provide geological and mineralogical context information that will be scientifically cross-correlated with that obtained by other instruments.[6]

Overview[edit]

RLS Parameter/units[7]
Type Raman spectrometer
Mass 2.4 kg
Power consumption 20W to 30 W
Laser wavelength 532 nm
Irradiance on sample 0.4 - 8 kW/cm2
Spectral range 150-3800/cm−1
Spectral resolution 6 to 8/cm
Spot size 50 μm

Raman spectroscopy is sensitive to the composition and structure of any organic compound, making it a powerful tool for the definitive identification and characterisation of biomarkers, and providing direct information of potential biosignatures of past microbial life on Mars.[3] This instrument will also provide general mineralogical information for igneous, metamorphous, and sedimentary processes.[3]

RST will also correlate its spectral information with other spectroscopic and imaging instruments such as the Infrared Spectrometer and MicrOmega-IR.[3] This will be the first Raman analyser to be deployed for a planetary exploration.[6] The first version for the rover was presented by Fernando Rull-Perez and Sylvestre Maurice in 2003.[6] The RLS is being developed by a European consortium integrated by Spanish, French, German and UK partners.[6] The Principal Investigator is Fernando Rull-Perez, from Spanish Astrobiology Center.[3] The co-investigator is from Observatoire Midi-Pyrénées (LAOMP), France.[8]

The three major components are the Spectrometer Unit, the Control and Excitation Unit (includes the power converters), and Optical head.[9]

Principle and operation[edit]

The RLS instrument provides a structural fingerprint by which molecules can be identified. It is used to analyse the vibrational modes of a substance either in the solid, liquid or gas state.[6] The technique relies on Raman scattering of a photon by molecules which are excited to higher vibrational or rotational energy levels. In more detail, it will collect and analyse the scattered light emitted by a laser on a crushed Mars rock sample; the spectrum observed (number of peaks, position and relative intensities) is determined by the molecular structure and composition of a compound, enabling the identification and characterisation of the compounds in the sample.[3]

Some advantages of RLS over other analysers are that it is nondestructive, analysis is completed in a fraction of a second, and the spectral bands provide definitive composition of the material.[6] RLS measurements will be conducted on the resulting crushed sample powder and it will be a useful tool for flagging the presence of organic molecules for further biomarker search by the MOMA analyser.[citation needed]

The processor board carries out several key functions for the Raman spectrometer control, spectral operation, data storage, and communications with the rover. The complete instrument has a mass of 2.4 kg (5.29 lb) and consumes about 30 W while operating.[3][6][7]

Objectives[edit]

The goal of RLS is to seek signs of past life on Mars (biosignatures and biomarkers) by analysing drilled samples acquired from 2  meters below the Martian surface by the Rosalind Franklin rover core drill. The science objectives of RLS are:[6]

  1. Identify organic compounds and search for life.[10]
  2. Identify mineral products and indicators of biologic activity.[10]
  3. Characterize mineral phases produced by water-related processes.
  4. Characterize igneous minerals and their alteration products.
  5. Characterize the water/geochemical environment as a function of depth in the shallow subsurface.

See also[edit]

References[edit]

  1. ^ Vago, Jorge L.; et al. (July 2017). "Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover". Astrobiology. 17 (6–7): 471–510. Bibcode:2017AsBio..17..471V. doi:10.1089/ast.2016.1533. PMC 5685153. PMID 31067287.
  • ^ Howell, Elizabeth (July 24, 2018). "ExoMars: Searching for Life on Mars". Space.com. Retrieved March 13, 2020.
  • ^ a b c d e f g "The ExoMars Rover Instrument Suite: RLS - Raman Spectrometer". European Space Agency. 3 April 2013.
  • ^ Popp, J.; Schmitt, M. (2006). "Raman spectroscopy breaking terrestrial barriers!". Journal of Raman Spectroscopy. 35 (6): 18–21. Bibcode:2004JRSp...35..429P. doi:10.1002/jrs.1198.
  • ^ Rull Pérez, Fernando; Martinez-Frias, Jesus (2006). "Raman spectroscopy goes to Mars" (PDF). Spectroscopy Europe. 18 (1): 18–21.
  • ^ a b c d e f g h The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars. Fernando Rull, Sylvestre Maurice, Ian Hutchinson, Andoni Moral, Carlos Perez, Carlos Diaz, Maria Colombo, Tomas Belenguer, Guillermo Lopez-Reyes, Antonio Sansano, Olivier Forni, Yann Parot, Nicolas Striebig, Simon Woodward, Chris Howe, Nicolau Tarcea, Pablo Rodriguez, Laura Seoane, Amaia Santiago, Jose A. Rodriguez-Prieto, Jesús Medina, Paloma Gallego, Rosario Canchal, Pilar Santamaría, Gonzalo Ramos, Jorge L. Vago, and on behalf of the RLS Team. Astrobiology, 1 July 2017, 17(6-7), pages 627-654. doi:10.1089/ast.2016.1567
  • ^ a b Raman Laser pectrometer for 2020 ExoMars Mission. Engineering and qualification model capabilities and future activities. (PDF). A. G. Morala, F. Rull, S. Maurice, I. Hutchinson, C.P. Canora, L. Seoane, R. Canchal, P. Gallego, G. Ramos, J.A.R. Prieto, A. Santiago, P. Santamaría, M. Colombo, T. Belenguer, G. López, C. Quintana, J. Zafra, A. Berrocal, C. Pintor, J. Cabrero, J. Saiz. 49th Lunar and Planetary Science Conference 2018. LPI Contrib. No. 2083.
  • ^ "The ExoMars Rover Instrument Suite". exploration.esa.int. Retrieved 2018-07-22.
  • ^ https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2400.pdf [bare URL PDF]
  • ^ a b The search for signatures of early life on Mars: Raman spectroscopy and the Exomars mission. Howell G.M. Edwards, Ian B. Hutchinson, Richard Ingley, Nick R. Waltham, Sarah Beardsley, Shaun Dowson, and Simon Woodward. Spectroscopy Europe.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Raman_Laser_Spectrometer&oldid=1199549384"

    Categories: 
    ExoMars
    Spacecraft instruments
    Mars imagers
    Astrobiology
    Space science experiments
    INTA spacecraft instruments
    Hidden categories: 
    All articles with bare URLs for citations
    Articles with bare URLs for citations from March 2022
    Articles with PDF format bare URLs for citations
    Articles with short description
    Short description with empty Wikidata description
    All articles with unsourced statements
    Articles with unsourced statements from August 2019
    Use British English from July 2018
     



    This page was last edited on 27 January 2024, at 09:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki