Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Justification  





3 Use  





4 References  





5 External links  














KarpFlatt metric






Polski
Türkçe
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Karp–Flatt metric is a measure of parallelization of code in parallel processor systems. This metric exists in addition to Amdahl's law and Gustafson's law as an indication of the extent to which a particular computer code is parallelized. It was proposed by Alan H. Karp and Horace P. Flatt in 1990.

Description

[edit]

Given a parallel computation exhibiting speedup on processors, where > 1, the experimentally determined serial fraction is defined to be the Karp–Flatt Metric viz:

The lower the value of , the better the parallelization.

Justification

[edit]

There are many ways to measure the performance of a parallel algorithm running on a parallel processor. The Karp–Flatt metric defines a metric which reveals aspects of the performance that are not easily discerned from other metrics. A pseudo-"derivation" of sorts follows from Amdahl's Law, which can be written as:

Where:

with the result obtained by substituting = 1 viz. , if we define the serial fraction = then the equation can be rewritten as

In terms of the speedup =  :

Solving for the serial fraction, we get the Karp–Flatt metric as above. Note that this is not a "derivation" from Amdahl's law as the left hand side represents a metric rather than a mathematically derived quantity. The treatment above merely shows that the Karp–Flatt metric is consistent with Amdahl's Law.

Use

[edit]

While the serial fraction e is often mentioned in computer science literature, it was rarely used as a diagnostic tool the way speedup and efficiency are. Karp and Flatt hoped to correct this by proposing this metric. This metric addresses the inadequacies of the other laws and quantities used to measure the parallelization of computer code. In particular, Amdahl's law does not take into account load balancing issues, nor does it take overhead into consideration. Using the serial fraction as a metric poses definite advantages over the others, particularly as the number of processors grows.

For a problem of fixed size, the efficiency of a parallel computation typically decreases as the number of processors increases. By using the serial fraction obtained experimentally using the Karp–Flatt metric, we can determine if the efficiency decrease is due to limited opportunities of parallelism or increases in algorithmic or architectural overhead.

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Karp–Flatt_metric&oldid=1170160400"

Category: 
Analysis of parallel algorithms
Hidden categories: 
Articles lacking in-text citations from March 2020
All articles lacking in-text citations
 



This page was last edited on 13 August 2023, at 13:19 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki