Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  





2 Examples  





3 Properties  





4 See also  





5 Notes and references  





6 Bibliography  





7 Further reading  














Identity element






العربية
Asturianu
Български
Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Galego

Hrvatski
Bahasa Indonesia
Interlingua
Íslenska
Italiano
עברית
Lombard
Magyar

Nederlands

Nordfriisk
Norsk nynorsk
Polski
Português
Română
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி

Türkçe
Українська
Tiếng Vit
ייִדיש


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Left identity)

Inmathematics, an identity elementorneutral element of a binary operation is an element that leaves unchanged every element when the operation is applied.[1][2] For example, 0 is an identity element of the additionofreal numbers. This concept is used in algebraic structures such as groups and rings. The term identity element is often shortened to identity (as in the case of additive identity and multiplicative identity)[3] when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with.

Definitions

[edit]

Let (S, ∗) be a set S equipped with a binary operation ∗. Then an element e of S is called a left identityifes = s for all s in S, and a right identityifse = s for all s in S.[4]Ife is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity.[5][6][7][8][9]

An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1).[3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary. In the case of a group for example, the identity element is sometimes simply denoted by the symbol . The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called unity in the latter context (a ring with unity).[10][11][12] This should not be confused with a unit in ring theory, which is any element having a multiplicative inverse. By its own definition, unity itself is necessarily a unit.[13][14]

Examples

[edit]
Set Operation Identity
Real numbers + (addition) 0
· (multiplication) 1
Complex numbers + (addition) 0
· (multiplication) 1
Positive integers Least common multiple 1
Non-negative integers Greatest common divisor 0 (under most definitions of GCD)
Vectors Vector addition Zero vector
m-by-n matrices Matrix addition Zero matrix
n-by-n square matrices Matrix multiplication In (identity matrix)
m-by-n matrices ○ (Hadamard product) Jm, n (matrix of ones)
All functions from a set, M, to itself ∘ (function composition) Identity function
All distributions on a groupG ∗ (convolution) δ (Dirac delta)
Extended real numbers Minimum/infimum +∞
Maximum/supremum −∞
Subsets of a set M ∩ (intersection) M
∪ (union) ∅ (empty set)
Strings, lists Concatenation Empty string, empty list
ABoolean algebra ∧ (logical and) ⊤ (truth)
↔ (logical biconditional) ⊤ (truth)
∨ (logical or) ⊥ (falsity)
⊕ (exclusive or) ⊥ (falsity)
Knots Knot sum Unknot
Compact surfaces # (connected sum) S2
Groups Direct product Trivial group
Two elements, {e, f}  ∗ defined by
ee = fe = e and
ff = ef = f
Both e and f are left identities,
but there is no right identity
and no two-sided identity
Homogeneous relations on a set X Relative product Identity relation
Relational algebra Natural join (⨝) The unique relation degree zero and cardinality one

Properties

[edit]

In the example S = {e,f} with the equalities given, S is a semigroup. It demonstrates the possibility for (S, ∗) to have several left identities. In fact, every element can be a left identity. In a similar manner, there can be several right identities. But if there is both a right identity and a left identity, then they must be equal, resulting in a single two-sided identity.

To see this, note that if l is a left identity and r is a right identity, then l = lr = r. In particular, there can never be more than one two-sided identity: if there were two, say e and f, then ef would have to be equal to both e and f.

It is also quite possible for (S, ∗) to have no identity element,[15] such as the case of even integers under the multiplication operation.[3] Another common example is the cross productofvectors, where the absence of an identity element is related to the fact that the direction of any nonzero cross product is always orthogonal to any element multiplied. That is, it is not possible to obtain a non-zero vector in the same direction as the original. Yet another example of structure without identity element involves the additive semigroupofpositive natural numbers.

See also

[edit]

Notes and references

[edit]
  1. ^ Weisstein, Eric W. "Identity Element". mathworld.wolfram.com. Retrieved 2019-12-01.
  • ^ "Definition of IDENTITY ELEMENT". www.merriam-webster.com. Retrieved 2019-12-01.
  • ^ a b c "Identity Element". www.encyclopedia.com. Retrieved 2019-12-01.
  • ^ Fraleigh (1976, p. 21)
  • ^ Beauregard & Fraleigh (1973, p. 96)
  • ^ Fraleigh (1976, p. 18)
  • ^ Herstein (1964, p. 26)
  • ^ McCoy (1973, p. 17)
  • ^ "Identity Element | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2019-12-01.
  • ^ Beauregard & Fraleigh (1973, p. 135)
  • ^ Fraleigh (1976, p. 198)
  • ^ McCoy (1973, p. 22)
  • ^ Fraleigh (1976, pp. 198, 266)
  • ^ Herstein (1964, p. 106)
  • ^ McCoy (1973, p. 22)
  • Bibliography

    [edit]

    Further reading

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Identity_element&oldid=1233029099"

    Categories: 
    Algebraic properties of elements
    Binary operations
    Properties of binary operations
    1 (number)
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 6 July 2024, at 22:11 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki