Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Hardware limits or physical limits  



1.1  Processing and memory density  





1.2  Processing speed  





1.3  Communication delays  





1.4  Energy supply  







2 Building devices that approach physical limits  





3 Abstract limits in computer science  



3.1  Loose and tight limits  







4 See also  





5 References  














Limits of computation






Čeština
فارسی
Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The limits of computation are governed by a number of different factors. In particular, there are several physical and practical limits to the amount of computationordata storage that can be performed with a given amount of mass, volume, or energy.

Hardware limits or physical limits

[edit]

Processing and memory density

[edit]

Processing speed

[edit]

Communication delays

[edit]

Energy supply

[edit]

Building devices that approach physical limits

[edit]

Several methods have been proposed for producing computing devices or data storage devices that approach physical and practical limits:

Abstract limits in computer science

[edit]

In the field of theoretical computer science the computability and complexity of computational problems are often sought-after. Computability theory describes the degree to which problems are computable, whereas complexity theory describes the asymptotic degree of resource consumption. Computational problems are therefore confined into complexity classes. The arithmetical hierarchy and polynomial hierarchy classify the degree to which problems are respectively computable and computable in polynomial time. For instance, the level of the arithmetical hierarchy classifies computable, partial functions. Moreover, this hierarchy is strict such that at any other class in the arithmetic hierarchy classifies strictly uncomputable functions.

Loose and tight limits

[edit]

Many limits derived in terms of physical constants and abstract models of computation in computer science are loose.[12] Very few known limits directly obstruct leading-edge technologies, but many engineering obstacles currently cannot be explained by closed-form limits.

See also

[edit]
  • Hypercomputation
  • Matrioshka brain
  • Physics of computation
  • Programmable matter
  • Quantum computing
  • Supertask
  • Transcomputational problem
  • References

    [edit]
    1. ^ Sandberg, Anders (22 December 1999). "The Physics of Information Processing Superobjects: Daily Life Among the Jupiter Brains" (PDF). Journal of Evolution and Technology. Archived from the original (PDF) on 5 March 2015. Retrieved 30 May 2014.
  • ^ Jordan, Stephen P. (2017). "Fast quantum computation at arbitrarily low energy". Phys. Rev. A. 95 (3): 032305. arXiv:1701.01175. Bibcode:2017PhRvA..95c2305J. doi:10.1103/physreva.95.032305. S2CID 118953874.
  • ^ Sinitsyn, Nikolai A. (2018). "Is there a quantum limit on speed of computation?". Physics Letters A. 382 (7): 477–481. arXiv:1701.05550. Bibcode:2018PhLA..382..477S. doi:10.1016/j.physleta.2017.12.042. S2CID 55887738.
  • ^ Vitelli, M.B.; Plenio, V. (2001). "The physics of forgetting: Landauer's erasure principle and information theory" (PDF). Contemporary Physics. 42 (1): 25–60. arXiv:quant-ph/0103108. Bibcode:2001ConPh..42...25P. doi:10.1080/00107510010018916. eISSN 1366-5812. hdl:10044/1/435. ISSN 0010-7514. S2CID 9092795.
  • ^ Sandberg, Anders; Armstrong, Stuart; Cirkovic, Milan M. (2017-04-27). "That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi's paradox". arXiv:1705.03394 [physics.pop-ph].
  • ^ Bennett, Charles H.; Hanson, Robin; Riedel, C. Jess (1 August 2019). "Comment on 'The Aestivation Hypothesis for Resolving Fermi's Paradox'". Foundations of Physics. 49 (8): 820–829. arXiv:1902.06730. Bibcode:2019FoPh...49..820B. doi:10.1007/s10701-019-00289-5. ISSN 1572-9516. S2CID 119045181.
  • ^ "Life on neutron stars". The Internet Encyclopedia of Science.
  • ^ "Femtotech? (Sub)Nuclear Scale Engineering and Computation". Archived from the original on October 25, 2004. Retrieved October 30, 2006.
  • ^ Lloyd, Seth (2000). "Ultimate physical limits to computation". Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. Bibcode:2000Natur.406.1047L. doi:10.1038/35023282. PMID 10984064. S2CID 75923.
  • ^ Lloyd, Seth (2000). "Ultimate physical limits to computation" (PDF). Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. Bibcode:2000Natur.406.1047L. doi:10.1038/35023282. PMID 10984064. S2CID 75923. Archived from the original (PDF) on August 7, 2008.
  • ^ Kurzweil, Ray (2005). The Singularity is Near. New York: Viking. p. 911.
  • ^ Markov, Igor (2014). "Limits on Fundamental Limits to Computation". Nature. 512 (7513): 147–154. arXiv:1408.3821. Bibcode:2014Natur.512..147M. doi:10.1038/nature13570. PMID 25119233. S2CID 4458968.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Limits_of_computation&oldid=1227032081"

    Categories: 
    Limits of computation
    Theory of computation
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from June 2022
     



    This page was last edited on 3 June 2024, at 07:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki