Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Design  





2 Quality control, trimming, error correction and pre-processing of data  



2.1  Quality control  





2.2  Improving the quality  



2.2.1  Trimming and adapters removal  





2.2.2  Detection of chimeric reads  





2.2.3  Error correction  





2.2.4  Bias correction  





2.2.5  Other tasks/pre-processing data  









3 Alignment tools  



3.1  Short (unspliced) aligners  





3.2  Spliced aligners  



3.2.1  Aligners based on known splice junctions (annotation-guided aligners)  





3.2.2  De novo splice aligners  



3.2.2.1  De novo splice aligners that also use annotation optionally  





3.2.2.2  Other spliced aligners  









3.3  Evaluation of alignment tools  







4 Normalization, quantitative analysis and differential expression  



4.1  General tools  





4.2  Evaluation of quantification and differential expression  





4.3  Multi-tool solutions  





4.4  Transposable Element expression  







5 Workbench (analysis pipeline / integrated solutions)  



5.1  Commercial solutions  





5.2  Open (free) source solutions  







6 Alternative splicing analysis  



6.1  General tools  





6.2  Intron retention analysis  





6.3  Differential isoform/transcript usage  







7 Fusion genes/chimeras/translocation finders/structural variations  





8 Copy number variation identification  





9 Single cell RNA-Seq  



9.1  Integrated Packages  





9.2  Quality Control and Gene Filtering  





9.3  Data cleaning and denoising  





9.4  Normalization  





9.5  Dimension Reduction  





9.6  Differential Expression  





9.7  Visualization  







10 RNA-Seq simulators  





11 Transcriptome assemblers  



11.1  Genome-guided assemblers  





11.2  Genome-independent (de novo) assemblers  





11.3  Assembly evaluation tools  







12 Co-expression networks  





13 miRNA prediction and analysis  





14 Visualization tools  





15 Functional, network and pathway analysis tools  





16 Further annotation tools for RNA-Seq data  





17 Compression tools  





18 RNA-Seq databases  



18.1  Human related  





18.2  Single species' RNA-Seq databases  







19 References  





20 External links  














List of RNA-Seq bioinformatics tools







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


RNA-Seq[1][2][3] is a technique[4] that allows transcriptome studies (see also Transcriptomics technologies) based on next-generation sequencing technologies. This technique is largely dependent on bioinformatics tools developed to support the different steps of the process. Here are listed some of the principal tools commonly employed and links to some important web resources.

Design[edit]

Design is a fundamental step of a particular RNA-Seq experiment. Some important questions like sequencing depth/coverage or how many biological or technical replicates must be carefully considered. Design review.[5]

Quality control, trimming, error correction and pre-processing of data[edit]

Quality assessment of raw data[6] is the first step of the bioinformatics pipeline of RNA-Seq. Often, is necessary to filter data, removing low quality sequences or bases (trimming), adapters, contaminations, overrepresented sequences or correcting errors to assure a coherent final result.

Quality control[edit]

Improving the quality[edit]

Improvement of the RNA-Seq quality, correcting the bias is a complex subject.[16][17] Each RNA-Seq protocol introduces specific type of bias, each step of the process (such as the sequencing technology used) is susceptible to generate some sort of noise or type of error. Furthermore, even the species under investigation and the biological context of the samples are able to influence the results and introduce some kind of bias. Many sources of bias were already reported – GC content and PCR enrichment,[18][19] rRNA depletion,[20] errors produced during sequencing,[21] priming of reverse transcription caused by random hexamers.[22]

Different tools were developed to attempt to solve each of the detected errors.

Trimming and adapters removal[edit]

Detection of chimeric reads[edit]

Recent sequencing technologies normally require DNA samples to be amplified via polymerase chain reaction (PCR). Amplification often generates chimeric elements (specially from ribosomal origin) - sequences formed from two or more original sequences joined.

Error correction[edit]

High-throughput sequencing errors characterization and their eventual correction.[30]

Bias correction[edit]

Other tasks/pre-processing data[edit]

Further tasks performed before alignment, namely paired-read mergers.

Alignment tools[edit]

After quality control, the first step of RNA-Seq analysis involves alignment of the sequenced reads to a reference genome (if available) or to a transcriptome database. See also List of sequence alignment software.

Short (unspliced) aligners[edit]

Short aligners are able to align continuous reads (not containing gaps result of splicing) to a genome of reference. Basically, there are two types: 1) based on the Burrows–Wheeler transform method such as Bowtie and BWA, and 2) based on Seed-extend methods, Needleman–WunschorSmith–Waterman algorithms. The first group (Bowtie and BWA) is many times faster, however some tools of the second group tend to be more sensitive, generating more correctly aligned reads.

Spliced aligners[edit]

Many reads span exon-exon junctions and can not be aligned directly by Short aligners, thus specific aligners were necessary - Spliced aligners. Some Spliced aligners employ Short aligners to align firstly unspliced/continuous reads (exon-first approach), and after follow a different strategy to align the rest containing spliced regions - normally the reads are split into smaller segments and mapped independently. See also.[45][46]

Aligners based on known splice junctions (annotation-guided aligners)[edit]

In this case the detection of splice junctions is based on data available in databases about known junctions. This type of tools cannot identify new splice junctions. Some of this data comes from other expression methods like expressed sequence tags (EST).

De novo splice aligners[edit]

De novo Splice aligners allow the detection of new Splice junctions without need to previous annotated information (some of these tools present annotation as a suplementar option).

De novo splice aligners that also use annotation optionally[edit]
Other spliced aligners[edit]

Evaluation of alignment tools[edit]

Normalization, quantitative analysis and differential expression[edit]

General tools[edit]

These tools perform normalization and calculate the abundance of each gene expressed in a sample.[51] RPKM, FPKM and TPMs[52] are some of the units employed to quantification of expression. Some software are also designed to study the variability of genetic expression between samples (differential expression). Quantitative and differential studies are largely determined by the quality of reads alignment and accuracy of isoforms reconstruction. Several studies are available comparing differential expression methods.[53][54][55]

Evaluation of quantification and differential expression[edit]

Multi-tool solutions[edit]

Transposable Element expression[edit]

Workbench (analysis pipeline / integrated solutions)[edit]

Commercial solutions[edit]

Open (free) source solutions[edit]

Alternative splicing analysis[edit]

General tools[edit]

Intron retention analysis[edit]

Differential isoform/transcript usage[edit]

Fusion genes/chimeras/translocation finders/structural variations[edit]

Genome arrangements result of diseases like cancer can produce aberrant genetic modifications like fusions or translocations. Identification of these modifications play important role in carcinogenesis studies.[85]

Copy number variation identification[edit]

Single cell RNA-Seq[edit]

Single cell sequencing. The traditional RNA-Seq methodology is commonly known as "bulk RNA-Seq", in this case RNA is extracted from a group of cells or tissues, not from the individual cell like it happens in single cell methods. Some tools available to bulk RNA-Seq are also applied to single cell analysis, however to face the specificity of this technique new algorithms were developed.

Integrated Packages[edit]

Quality Control and Gene Filtering[edit]

Data cleaning and denoising[edit]

Normalization[edit]

Dimension Reduction[edit]

Differential Expression[edit]

Visualization[edit]

RNA-Seq simulators[edit]

These Simulators generate in silico reads and are useful tools to compare and test the efficiency of algorithms developed to handle RNA-Seq data. Moreover, some of them make possible to analyse and model RNA-Seq protocols.

Transcriptome assemblers[edit]

The transcriptome is the total population of RNAs expressed in one cell or group of cells, including non-coding and protein-coding RNAs. There are two types of approaches to assemble transcriptomes. Genome-guided methods use a reference genome (if possible a finished and high quality genome) as a template to align and assembling reads into transcripts. Genome-independent methods does not require a reference genome and are normally used when a genome is not available. In this case reads are assembled directly in transcripts.

Genome-guided assemblers[edit]

Genome-independent (de novo) assemblers[edit]

Assembly evaluation tools[edit]

Co-expression networks[edit]

miRNA prediction and analysis[edit]

Visualization tools[edit]

Functional, network and pathway analysis tools[edit]

Further annotation tools for RNA-Seq data[edit]

Compression tools[edit]

RNA-Seq databases[edit]

Human related[edit]

Single species' RNA-Seq databases[edit]

References[edit]

  1. ^ Wang Z, Gerstein M, Snyder M (January 2009). "RNA-Seq: a revolutionary tool for transcriptomics". Nature Reviews. Genetics. 10 (1): 57–63. doi:10.1038/nrg2484. PMC 2949280. PMID 19015660.
  • ^ Kukurba KR, Montgomery SB (April 2015). "RNA Sequencing and Analysis". Cold Spring Harbor Protocols. 2015 (11): 951–969. doi:10.1101/pdb.top084970. PMC 4863231. PMID 25870306.
  • ^ Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. (January 2016). "A survey of best practices for RNA-seq data analysis". Genome Biology. 17 (13): 13. doi:10.1186/s13059-016-0881-8. PMC 4728800. PMID 26813401.
  • ^ "RNA Sequencing and analysis" (PDF). Canadian Bioinformatics Workshops. 2012.
  • ^ Poplawski A, Binder H (July 2018). "Feasibility of sample size calculation for RNA-seq studies". Briefings in Bioinformatics. 19 (4): 713–720. doi:10.1093/bib/bbw144. PMID 28100468. S2CID 28848959.
  • ^ Sheng Q, Vickers K, Zhao S, Wang J, Samuels DC, Koues O, et al. (July 2017). "Multi-perspective quality control of Illumina RNA sequencing data analysis". Briefings in Functional Genomics. 16 (4): 194–204. doi:10.1093/bfgp/elw035. PMC 5860075. PMID 27687708.
  • ^ a b Hoogstrate Y, Komor MA, Böttcher R, van Riet J, van de Werken HJ, van Lieshout S, et al. (December 2021). "Fusion transcripts and their genomic breakpoints in polyadenylated and ribosomal RNA-minus RNA sequencing data". GigaScience. 10 (12): giab080. doi:10.1093/gigascience/giab080. PMC 8673554. PMID 34891161.
  • ^ Sayols S, Klein H (2015). "dupRadar: Assessment of duplication rates in RNA-Seq datasets. R package version 1.1.0". doi:10.18129/B9.bioc.dupRadar. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ (September 2013). "Kraken: a set of tools for quality control and analysis of high-throughput sequence data". Methods. 63 (1): 41–49. doi:10.1016/j.ymeth.2013.06.027. PMC 3991327. PMID 23816787.
  • ^ Anders S, Pyl PT, Huber W (January 2015). "HTSeq--a Python framework to work with high-throughput sequencing data". Bioinformatics. 31 (2): 166–169. doi:10.1093/bioinformatics/btu638. PMC 4287950. PMID 25260700.
  • ^ Feng H, Zhang X, Zhang C (August 2015). "mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data". Nature Communications. 6 (7816): 7816. Bibcode:2015NatCo...6.7816F. doi:10.1038/ncomms8816. PMC 4523900. PMID 26234653.
  • ^ Ewels P, Magnusson M, Lundin S, Käller M (October 2016). "MultiQC: summarize analysis results for multiple tools and samples in a single report". Bioinformatics. 32 (19): 3047–3048. doi:10.1093/bioinformatics/btw354. PMC 5039924. PMID 27312411.
  • ^ DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. (June 2012). "RNA-SeQC: RNA-seq metrics for quality control and process optimization". Bioinformatics. 28 (11): 1530–1532. doi:10.1093/bioinformatics/bts196. PMC 3356847. PMID 22539670.
  • ^ Wang L, Wang S, Li W (August 2012). "RSeQC: quality control of RNA-seq experiments". Bioinformatics. 28 (16): 2184–2185. doi:10.1093/bioinformatics/bts356. PMID 22743226.
  • ^ Lassmann T, Hayashizaki Y, Daub CO (January 2011). "SAMStat: monitoring biases in next generation sequencing data". Bioinformatics. 27 (1): 130–131. doi:10.1093/bioinformatics/btq614. PMC 3008642. PMID 21088025.
  • ^ Lahens NF, Kavakli IH, Zhang R, Hayer K, Black MB, Dueck H, et al. (June 2014). "IVT-seq reveals extreme bias in RNA sequencing". Genome Biology. 15 (6): R86. doi:10.1186/gb-2014-15-6-r86. PMC 4197826. PMID 24981968.
  • ^ Li S, Łabaj PP, Zumbo P, Sykacek P, Shi W, Shi L, et al. (September 2014). "Detecting and correcting systematic variation in large-scale RNA sequencing data". Nature Biotechnology. 32 (9): 888–895. doi:10.1038/nbt.3000. PMC 4160374. PMID 25150837.
  • ^ Benjamini Y, Speed TP (May 2012). "Summarizing and correcting the GC content bias in high-throughput sequencing". Nucleic Acids Research. 40 (10): e72. doi:10.1093/nar/gks001. PMC 3378858. PMID 22323520.
  • ^ Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. (2011). "Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries". Genome Biology. 12 (2): R18. doi:10.1186/gb-2011-12-2-r18. PMC 3188800. PMID 21338519.
  • ^ Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, et al. (July 2013). "Comparative analysis of RNA sequencing methods for degraded or low-input samples". Nature Methods. 10 (7): 623–629. doi:10.1038/nmeth.2483. PMC 3821180. PMID 23685885.
  • ^ Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, et al. (July 2011). "Sequence-specific error profile of Illumina sequencers". Nucleic Acids Research. 39 (13): e90. doi:10.1093/nar/gkr344. PMC 3141275. PMID 21576222.
  • ^ Hansen KD, Brenner SE, Dudoit S (July 2010). "Biases in Illumina transcriptome sequencing caused by random hexamer priming". Nucleic Acids Research. 38 (12): e131. doi:10.1093/nar/gkq224. PMC 2896536. PMID 20395217.
  • ^ Criscuolo A, Brisse S (November 2013). "AlienTrimmer: a tool to quickly and accurately trim off multiple short contaminant sequences from high-throughput sequencing reads". Genomics. 102 (5–6): 500–506. doi:10.1016/j.ygeno.2013.07.011. PMID 23912058.
  • ^ Smeds L, Künstner A (19 October 2011). "ConDeTri--a content dependent read trimmer for Illumina data". PLOS ONE. 6 (10): e26314. Bibcode:2011PLoSO...626314S. doi:10.1371/journal.pone.0026314. PMC 3198461. PMID 22039460.
  • ^ Magoč T, Salzberg SL (November 2011). "FLASH: fast length adjustment of short reads to improve genome assemblies". Bioinformatics. 27 (21): 2957–2963. doi:10.14806/ej.17.1.200. PMC 3198573. PMID 21903629.
  • ^ Prezza N, Del Fabbro C, Vezzi F, De Paoli E, Policriti A (2012). "Erne-Bs5". Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine. Vol. 12. pp. 12–19. doi:10.1145/2382936.2382938. ISBN 9781450316705. S2CID 5673753.
  • ^ Schmieder R, Edwards R (March 2011). "Quality control and preprocessing of metagenomic datasets". Bioinformatics. 27 (6): 863–864. doi:10.1093/bioinformatics/btr026. PMC 3051327. PMID 21278185.
  • ^ Dlugosch KM, Lai Z, Bonin A, Hierro J, Rieseberg LH (February 2013). "Allele identification for transcriptome-based population genomics in the invasive plant Centaurea solstitialis". G3. 3 (2): 359–367. doi:10.1534/g3.112.003871. PMC 3564996. PMID 23390612.
  • ^ Bolger AM, Lohse M, Usadel B (August 2014). "Trimmomatic: a flexible trimmer for Illumina sequence data". Bioinformatics. 30 (15): 2114–2120. doi:10.1093/bioinformatics/btu170. PMC 4103590. PMID 24695404.
  • ^ Laehnemann D, Borkhardt A, McHardy AC (January 2016). "Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction". Briefings in Bioinformatics. 17 (1): 154–179. doi:10.1093/bib/bbv029. PMC 4719071. PMID 26026159.
  • ^ Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (January 2011). "Removing noise from pyrosequenced amplicons". BMC Bioinformatics. 12 (38): 38. doi:10.1186/1471-2105-12-38. PMC 3045300. PMID 21276213.
  • ^ Heo Y, Wu XL, Chen D, Ma J, Hwu WM (May 2014). "BLESS: bloom filter-based error correction solution for high-throughput sequencing reads". Bioinformatics. 30 (10): 1354–1362. doi:10.1093/bioinformatics/btu030. PMC 6365934. PMID 24451628.
  • ^ Greenfield P, Duesing K, Papanicolaou A, Bauer DC (October 2014). "Blue: correcting sequencing errors using consensus and context". Bioinformatics. 30 (19): 2723–2732. doi:10.1093/bioinformatics/btu368. PMID 24919879.
  • ^ Michael I Love; John B Hogenesch; Rafael A Irizarry (2015). "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation". bioRxiv 10.1101/025767.
  • ^ Hansen KD, Irizarry RA, Wu Z (April 2012). "Removing technical variability in RNA-seq data using conditional quantile normalization". Biostatistics. 13 (2): 204–216. doi:10.1093/biostatistics/kxr054. PMC 3297825. PMID 22285995.
  • ^ Risso D, Schwartz K, Sherlock G, Dudoit S (December 2011). "GC-content normalization for RNA-Seq data". BMC Bioinformatics. 12 (1): 480. doi:10.1186/1471-2105-12-480. PMC 3315510. PMID 22177264.
  • ^ Stegle O, Parts L, Piipari M, Winn J, Durbin R (February 2012). "Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses". Nature Protocols. 7 (3): 500–507. doi:10.1038/nprot.2011.457. PMC 3398141. PMID 22343431.
  • ^ Risso D, Ngai J, Speed TP, Dudoit S (September 2014). "Normalization of RNA-seq data using factor analysis of control genes or samples". Nature Biotechnology. 32 (9): 896–902. doi:10.1038/nbt.2931. PMC 4404308. PMID 25150836.
  • ^ Meacham F, Boffelli D, Dhahbi J, Martin DI, Singer M, Pachter L (November 2011). "Identification and correction of systematic error in high-throughput sequence data". BMC Bioinformatics. 12 (1): 451. doi:10.1186/1471-2105-12-451. PMC 3295828. PMID 22099972.
  • ^ Liu B, Yuan J, Yiu SM, Li Z, Xie Y, Chen Y, et al. (November 2012). "COPE: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly". Bioinformatics. 28 (22): 2870–2874. doi:10.1093/bioinformatics/bts563. PMID 23044551.
  • ^ Zhang J, Kobert K, Flouri T, Stamatakis A (March 2014). "PEAR: a fast and accurate Illumina Paired-End reAd mergeR". Bioinformatics. 30 (5): 614–620. doi:10.1093/bioinformatics/btt593. PMC 3933873. PMID 24142950.
  • ^ Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR, Alm EJ, Chisholm SW (July 2010). "Unlocking short read sequencing for metagenomics". PLOS ONE. 5 (7): e11840. Bibcode:2010PLoSO...511840R. doi:10.1371/journal.pone.0011840. PMC 2911387. PMID 20676378.
  • ^ Sangiovanni M, Granata I, Thind AS, Guarracino MR (April 2019). "From trash to treasure: detecting unexpected contamination in unmapped NGS data". BMC Bioinformatics. 20 (Suppl 4): 168. doi:10.1186/s12859-019-2684-x. PMC 6472186. PMID 30999839.
  • ^ a b Liao Y, Smyth GK, Shi W (May 2013). "The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote". Nucleic Acids Research. 41 (10): e108. doi:10.1093/nar/gkt214. PMC 3664803. PMID 23558742.
  • ^ Alamancos GP, Agirre E, Eyras E (2014). "Methods to Study Splicing from High-Throughput RNA Sequencing Data". Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology. Vol. 1126. pp. 357–97. arXiv:1304.5952. doi:10.1007/978-1-62703-980-2_26. ISBN 978-1-62703-979-6. PMID 24549677. S2CID 18574607.
  • ^ Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (February 2017). "Simulation-based comprehensive benchmarking of RNA-seq aligners". Nature Methods. 14 (2): 135–139. doi:10.1038/nmeth.4106. PMC 5792058. PMID 27941783.
  • ^ Campagna D, Telatin A, Forcato C, Vitulo N, Valle G (January 2013). "PASS-bis: a bisulfite aligner suitable for whole methylome analysis of Illumina and SOLiD reads". Bioinformatics. 29 (2): 268–270. doi:10.1093/bioinformatics/bts675. PMID 23162053.
  • ^ Ahn J, Xiao X (December 2015). "RASER: reads aligner for SNPs and editing sites of RNA". Bioinformatics. 31 (24): 3906–3913. doi:10.1093/bioinformatics/btv505. PMC 4692970. PMID 26323713.
  • ^ a b Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. (January 2013). "STAR: ultrafast universal RNA-seq aligner". Bioinformatics. 29 (1): 15–21. doi:10.1093/bioinformatics/bts635. PMC 3530905. PMID 23104886.
  • ^ Trapnell C, Pachter L, Salzberg SL (May 2009). "TopHat: discovering splice junctions with RNA-Seq". Bioinformatics. 25 (9): 1105–1111. doi:10.1093/bioinformatics/btp120. PMC 2672628. PMID 19289445.
  • ^ Pachter L (2011). "Models for transcript quantification from RNA-Seq". arXiv:1104.3889 [q-bio.GN].
  • ^ Jin H, Wan YW, Liu Z (March 2017). "Comprehensive evaluation of RNA-seq quantification methods for linearity". BMC Bioinformatics. 18 (Suppl 4): 117. doi:10.1186/s12859-017-1526-y. PMC 5374695. PMID 28361706.
  • ^ Kvam VM, Liu P, Si Y (February 2012). "A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data". American Journal of Botany. 99 (2): 248–256. doi:10.3732/ajb.1100340. PMID 22268221.
  • ^ Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. (November 2013). "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis". Briefings in Bioinformatics. 14 (6): 671–683. doi:10.1093/bib/bbs046. PMID 22988256.
  • ^ Evans C, Hardin J, Stoebel DM (September 2018). "Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions". Briefings in Bioinformatics. 19 (5): 776–792. doi:10.1093/bib/bbx008. PMC 6171491. PMID 28334202.
  • ^ Wu Z, Jenkins BD, Rynearson TA, Dyhrman ST, Saito MA, Mercier M, Whitney LP (November 2010). "Empirical bayes analysis of sequencing-based transcriptional profiling without replicates". BMC Bioinformatics. 11: 564. doi:10.1186/1471-2105-11-564. PMC 3098101. PMID 21080965.
  • ^ Hajiramezanali, E. & Dadaneh, S. Z. & Figueiredo, P. d. & Sze, S. & Zhou, Z. & Qian, X. Differential Expression Analysis of Dynamical Sequencing Count Data with a Gamma Markov Chain. arXiv:1803.02527
  • ^ a b Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. (May 2010). "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation". Nature Biotechnology. 28 (5): 511–515. doi:10.1038/nbt.1621. PMC 3146043. PMID 20436464.
  • ^ Klambauer G, Unterthiner T, Hochreiter S (November 2013). "DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions". Nucleic Acids Research. 41 (21): e198. doi:10.1093/nar/gkt834. PMC 3834838. PMID 24049071.
  • ^ Vavoulis DV, Francescatto M, Heutink P, Gough J (February 2015). "DGEclust: differential expression analysis of clustered count data". Genome Biology. 16 (1): 39. doi:10.1186/s13059-015-0604-6. PMC 4365804. PMID 25853652.
  • ^ Yépez, Vicente A.; Mertes, Christian; Müller, Michaela F.; Klaproth-Andrade, Daniela; Wachutka, Leonhard; Frésard, Laure; Gusic, Mirjana; Scheller, Ines F.; Goldberg, Patricia F.; Prokisch, Holger; Gagneur, Julien (February 2021). "Detection of aberrant gene expression events in RNA sequencing data". Nature Protocols. 16 (2): 1276–1296. doi:10.1038/s41596-020-00462-5. PMID 33462443.
  • ^ Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y (November 2012). "GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data". Bioinformatics. 28 (21): 2782–2788. doi:10.1093/bioinformatics/bts515. PMID 22923299.
  • ^ Rauschenberger A, Jonker MA, van de Wiel MA, Menezes RX (March 2016). "Testing for association between RNA-Seq and high-dimensional data". BMC Bioinformatics. 17 (118): 118. doi:10.1186/s12859-016-0961-5. PMC 4782413. PMID 26951498.
  • ^ Cao M, Zhou W, Breidt FJ, Peers G (March 2020). "Large scale maximum average power multiple inference on time-course count data with application to RNA-seq analysis". Biometrics. 76 (1): 9–22. doi:10.1111/biom.13144. PMID 31483480.
  • ^ Moulos P, Hatzis P (February 2015). "Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns". Nucleic Acids Research. 43 (4): e25. doi:10.1093/nar/gku1273. PMC 4344485. PMID 25452340.
  • ^ Hoogstrate, Youri; Draaisma, Kaspar; Ghisai, Santoesha A.; van Hijfte, Levi; Barin, Nastaran; de Heer, Iris; Coppieters, Wouter; van den Bosch, Thierry P. P.; Bolleboom, Anne; Gao, Zhenyu; Vincent, Arnaud J. P. E.; Karim, Latifa; Deckers, Manon; Taphoorn, Martin J. B.; Kerkhof, Melissa; Weyerbrock, Astrid; Sanson, Marc; Hoeben, Ann; Lukacova, Slávka; Lombardi, Giuseppe; Leenstra, Sieger; Hanse, Monique; Fleischeuer, Ruth E. M.; Watts, Colin; Angelopoulos, Nicos; Gorlia, Thierry; Golfinopoulos, Vassilis; Bours, Vincent; van den Bent, Martin J.; Robe, Pierre A.; French, Pim J. (9 March 2023). "Transcriptome analysis reveals tumor microenvironment changes in glioblastoma". Cancer Cell. 41 (4): 678–692.e7. doi:10.1016/j.ccell.2023.02.019. hdl:1887/3748087. PMID 36898379. S2CID 257437946.
  • ^ Rauschenberger A, Menezes RX, van de Wiel MA, van Schoor NM, Jonker MA (2018). "Detecting SNPs with interactive effects on a quantitative trait". arXiv:1805.09175 [stat.ME].
  • ^ Vera Alvarez R, Pongor LS, Mariño-Ramírez L, Landsman D (June 2019). "TPMCalculator: one-step software to quantify mRNA abundance of genomic features". Bioinformatics. 35 (11): 1960–1962. doi:10.1093/bioinformatics/bty896. PMC 6546121. PMID 30379987.
  • ^ Navarro FC, Hoops J, Bellfy L, Cerveira E, Zhu Q, Zhang C, et al. (August 2019). "TeXP: Deconvolving the effects of pervasive and autonomous transcription of transposable elements". PLOS Computational Biology. 15 (8): e1007293. Bibcode:2019PLSCB..15E7293N. doi:10.1371/journal.pcbi.1007293. PMC 6715295. PMID 31425522.
  • ^ Akhmedov M, Martinelli A, Geiger R, Kwee I (March 2020). "Omics Playground: a comprehensive self-service platform for visualization, analytics and exploration of Big Omics Data". NAR Genomics and Bioinformatics. 2 (1): lqz019. doi:10.1093/nargab/lqz019. PMC 7671354. PMID 33575569.
  • ^ Yao L, Wang H, Song Y, Sui G (October 2017). "BioQueue: a novel pipeline framework to accelerate bioinformatics analysis". Bioinformatics. 33 (20): 3286–3288. doi:10.1093/bioinformatics/btx403. PMID 28633441.
  • ^ Kartashov AV, Barski A (August 2015). "BioWardrobe: an integrated platform for analysis of epigenomics and transcriptomics data". Genome Biology. 16 (1): 158. doi:10.1186/s13059-015-0720-3. PMC 4531538. PMID 26248465.
  • ^ Levin L, Bar-Yaacov D, Bouskila A, Chorev M, Carmel L, Mishmar D (2015). "LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes". PLOS ONE. 10 (11): e0143329. Bibcode:2015PLoSO..1043329L. doi:10.1371/journal.pone.0143329. PMC 4659627. PMID 26606265.
  • ^ Pundhir S, Gorodkin J (July 2015). "Differential and coherent processing patterns from small RNAs". Scientific Reports. 5: 12062. Bibcode:2015NatSR...512062P. doi:10.1038/srep12062. PMC 4499813. PMID 26166713.
  • ^ Rogers MF, Thomas J, Reddy AS, Ben-Hur A (January 2012). "SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data". Genome Biology. 13 (1): R4. doi:10.1186/gb-2012-13-1-r4. PMC 3334585. PMID 22293517.
  • ^ Rogers MF, Boucher C, Ben-Hur A (2013). "SpliceGrapherXT". Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. BCB'13. New York, NY, USA: ACM. pp. 247:247–247:255. doi:10.1145/2506583.2506625. ISBN 9781450324342. S2CID 15009112.
  • ^ Wu J, Akerman M, Sun S, McCombie WR, Krainer AR, Zhang MQ (November 2011). "SpliceTrap: a method to quantify alternative splicing under single cellular conditions". Bioinformatics. 27 (21): 3010–3016. doi:10.1093/bioinformatics/btr508. PMC 3198574. PMID 21896509.
  • ^ Mertes, Christian; Scheller, Ines F.; Yépez, Vicente A.; Çelik, Muhammed H.; Liang, Yingjiqiong; Kremer, Laura S.; Gusic, Mirjana; Prokisch, Holger; Gagneur, Julien (22 January 2021). "Detection of aberrant splicing events in RNA-seq data using FRASER". Nature Communications. 12 (1): 529. Bibcode:2021NatCo..12..529M. doi:10.1038/s41467-020-20573-7. PMC 7822922. PMID 33483494.
  • ^ Scheller, Ines F.; Lutz, Karoline; Mertes, Christian; Yépez, Vicente A.; Gagneur, Julien (December 2023). "Improved detection of aberrant splicing with FRASER 2.0 and the intron Jaccard index". The American Journal of Human Genetics. 110 (12): 2056–2067. doi:10.1016/j.ajhg.2023.10.014. PMC 10716352. PMID 38006880.
  • ^ Vitting-Seerup K, Sandelin A (September 2017). "The Landscape of Isoform Switches in Human Cancers". Molecular Cancer Research. 15 (9): 1206–1220. doi:10.1158/1541-7786.mcr-16-0459. PMID 28584021.
  • ^ Nowicka M, Robinson MD (6 December 2016). "DRIMSeq: a Dirichlet-multinomial framework for multivariate count outcomes in genomics". F1000Research. 5: 1356. doi:10.12688/f1000research.8900.2. PMC 5200948. PMID 28105305.
  • ^ Papastamoulis P, Rattray M (November 2017). "Bayesian estimation of differential transcript usage from RNA-seq data". Statistical Applications in Genetics and Molecular Biology. 16 (5–6): 367–386. arXiv:1701.03095. Bibcode:2017arXiv170103095P. doi:10.1515/sagmb-2017-0005. PMID 29091583. S2CID 915799.
  • ^ Shi Y, Chinnaiyan AM, Jiang H (July 2015). "rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data". Bioinformatics. 31 (13): 2222–2224. doi:10.1093/bioinformatics/btv119. PMC 4481847. PMID 25717189.
  • ^ Jones DC, Kuppusamy KT, Palpant NJ, Peng X, Murry CE, Ruohola-Baker H, Ruzzo WL (20 November 2016). "Isolator: accurate and stable analysis of isoform-level expression in RNA-Seq experiments". bioRxiv 10.1101/088765.
  • ^ Kumar S, Vo AD, Qin F, Li H (February 2016). "Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data". Scientific Reports. 6 (21587): 21597. Bibcode:2016NatSR...621597K. doi:10.1038/srep21597. PMC 4748267. PMID 26862001.
  • ^ Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, et al. (March 2021). "Accurate and efficient detection of gene fusions from RNA sequencing data". Genome Research. 31 (3): 448–460. doi:10.1101/gr.257246.119. PMC 7919457. PMID 33441414.
  • ^ Creason A, Haan D, Dang K, Chiotti KE, Inkman M, Lamb A, et al. (August 2021). "A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery". Cell Systems. 12 (8): 827–838.e5. doi:10.1016/j.cels.2021.05.021. PMC 8376800. PMID 34146471.
  • ^ Abate, Francesco; Acquaviva, Andrea; Paciello, Giulia; Foti, Carmelo; Ficarra, Elisa; Ferrarini, Alberto; Delledonne, Massimo; Iacobucci, Ilaria; Soverini, Simona; Martinelli, Giovanni; Macii, Enrico (15 August 2012). "Bellerophontes: an RNA-Seq data analysis framework for chimeric transcripts discovery based on accurate fusion model". Bioinformatics. 28 (16): 2114–2121. doi:10.1093/bioinformatics/bts334. ISSN 1367-4811. PMID 22711792.
  • ^ Fan, Xian; Abbott, Travis E.; Larson, David; Chen, Ken (2014). "BreakDancer: Identification of Genomic Structural Variation from Paired-End Read Mapping". Current Protocols in Bioinformatics. 45: 15.6.1–11. doi:10.1002/0471250953.bi1506s45. ISSN 1934-340X. PMC 4138716. PMID 25152801.
  • ^ Chen, Ken; Wallis, John W.; Kandoth, Cyriac; Kalicki-Veizer, Joelle M.; Mungall, Karen L.; Mungall, Andrew J.; Jones, Steven J.; Marra, Marco A.; Ley, Timothy J.; Mardis, Elaine R.; Wilson, Richard K.; Weinstein, John N.; Ding, Li (15 July 2012). "BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data". Bioinformatics. 28 (14): 1923–1924. doi:10.1093/bioinformatics/bts272. ISSN 1367-4811. PMC 3389765. PMID 22563071.
  • ^ Iyer, Matthew K.; Chinnaiyan, Arul M.; Maher, Christopher A. (11 August 2011). "ChimeraScan: a tool for identifying chimeric transcription in sequencing data". Bioinformatics. 27 (20): 2903–2904. doi:10.1093/bioinformatics/btr467. ISSN 1367-4811. PMC 3187648. PMID 21840877.
  • ^ Chu, Hsueh-Ting; Hsiao, William W. L.; Chen, Jen-Chih; Yeh, Tze-Jung; Tsai, Mong-Hsun; Lin, Han; Liu, Yen-Wenn; Lee, Sheng-An; Chen, Chaur-Chin; Tsao, Theresa T. H.; Kao, Cheng-Yan (1 March 2013). "EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection". Bioinformatics. 29 (8): 1004–1010. doi:10.1093/bioinformatics/btt092. ISSN 1367-4811. PMID 23457040.
  • ^ a b Haas, Brian J.; Dobin, Alex; Stransky, Nicolas; Li, Bo; Yang, Xiao; Tickle, Timothy; Bankapur, Asma; Ganote, Carrie; Doak, Thomas G. (24 March 2017). "STAR-Fusion: Fast and Accurate Fusion Transcript Detection from RNA-Seq". doi:10.1101/120295. S2CID 43186395. Retrieved 30 August 2023. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ a b Nicorici, Daniel; Satalan, Mihaela; Edgren, Henrik; Kangaspeska, Sara; Murumagi, Astrid; Kallioniemi, Olli; Virtanen, Sami; Kilkku, Olavi (19 November 2014). "FusionCatcher - a tool for finding somatic fusion genes in paired-end RNA-sequencing data". doi:10.1101/011650. S2CID 85702767. Retrieved 30 August 2023. {{cite journal}}: Cite journal requires |journal= (help)
  • ^ a b Okonechnikov, Konstantin; Imai-Matsushima, Aki; Paul, Lukas; Seitz, Alexander; Meyer, Thomas F.; Garcia-Alcalde, Fernando (1 December 2016). "InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data". PLOS ONE. 11 (12): e0167417. Bibcode:2016PLoSO..1167417O. doi:10.1371/journal.pone.0167417. ISSN 1932-6203. PMC 5132003. PMID 27907167.
  • ^ a b Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. (October 2010). "MapSplice: accurate mapping of RNA-seq reads for splice junction discovery". Nucleic Acids Research. 38 (18): e178. doi:10.1093/nar/gkq622. PMC 2952873. PMID 20802226.
  • ^ a b Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, et al. (February 2013). "SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data". Genome Biology. 14 (2): R12. doi:10.1186/gb-2013-14-2-r12. PMC 4054009. PMID 23409703.
  • ^ Weber, David; Ibn-Salem, Jonas; Sorn, Patrick; Suchan, Martin; Holtsträter, Christoph; Lahrmann, Urs; Vogler, Isabel; Schmoldt, Kathrin; Lang, Franziska; Schrörs, Barbara; Löwer, Martin; Sahin, Ugur (4 April 2022). "Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens". Nature Biotechnology. 40 (8): 1276–1284. doi:10.1038/s41587-022-01247-9. ISSN 1087-0156. PMC 7613288. PMID 35379963.
  • ^ Benelli, Matteo; Pescucci, Chiara; Marseglia, Giuseppina; Severgnini, Marco; Torricelli, Francesca; Magi, Alberto (23 October 2012). "Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript". Bioinformatics. 28 (24): 3232–3239. doi:10.1093/bioinformatics/bts617. ISSN 1367-4811. PMID 23093608.
  • ^ Dehghannasiri R, Freeman DE, Jordanski M, Hsieh GL, Damljanovic A, Lehnert E, Salzman J (July 2019). "Improved detection of gene fusions by applying statistical methods reveals oncogenic RNA cancer drivers". Proceedings of the National Academy of Sciences of the United States of America. 116 (31): 15524–15533. Bibcode:2019PNAS..11615524D. doi:10.1073/pnas.1900391116. PMC 6681709. PMID 31308241.
  • ^ McPherson, Andrew; Hormozdiari, Fereydoun; Zayed, Abdalnasser; Giuliany, Ryan; Ha, Gavin; Sun, Mark G. F.; Griffith, Malachi; Heravi Moussavi, Alireza; Senz, Janine; Melnyk, Nataliya; Pacheco, Marina; Marra, Marco A.; Hirst, Martin; Nielsen, Torsten O.; Sahinalp, S. Cenk (May 2011). "deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data". PLOS Computational Biology. 7 (5): e1001138. Bibcode:2011PLSCB...7E1138M. doi:10.1371/journal.pcbi.1001138. ISSN 1553-7358. PMC 3098195. PMID 21625565.
  • ^ Hoogstrate Y, Ghisai SA, de Wit M, de Heer I, Draaisma K, van Riet J, et al. (March 2022). "The EGFRvIII transcriptome in glioblastoma: A meta-omics analysis". Neuro-Oncology. 24 (3): 429–441. doi:10.1093/neuonc/noab231. PMC 8917407. PMID 34608482.
  • ^ Piazza, Rocco; Pirola, Alessandra; Spinelli, Roberta; Valletta, Simona; Redaelli, Sara; Magistroni, Vera; Gambacorti-Passerini, Carlo (September 2012). "FusionAnalyser: a new graphical, event-driven tool for fusion rearrangements discovery". Nucleic Acids Research. 40 (16): e123. doi:10.1093/nar/gks394. ISSN 1362-4962. PMC 3439881. PMID 22570408.
  • ^ Ge, Huanying; Liu, Kejun; Juan, Todd; Fang, Fang; Newman, Matthew; Hoeck, Wolfgang (18 May 2011). "FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution". Bioinformatics. 27 (14): 1922–1928. doi:10.1093/bioinformatics/btr310. ISSN 1367-4803. PMID 21593131.
  • ^ Sboner, Andrea; Habegger, Lukas; Pflueger, Dorothee; Terry, Stephane; Chen, David Z; Rozowsky, Joel S; Tewari, Ashutosh K; Kitabayashi, Naoki; Moss, Benjamin J; Chee, Mark S; Demichelis, Francesca; Rubin, Mark A; Gerstein, Mark B (October 2010). "FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data". Genome Biology. 11 (10): R104. doi:10.1186/gb-2010-11-10-r104. ISSN 1474-760X. PMC 3218660. PMID 20964841.
  • ^ Davidson, Nadia M; Majewski, Ian J; Oshlack, Alicia (12 January 2015). "JAFFA: High sensitivity transcriptome-focused fusion gene detection". Genome Medicine. 7 (1): 43. bioRxiv 10.1101/013698. doi:10.1186/s13073-015-0167-x (inactive 20 February 2024). hdl:11343/261352. PMC 4445815. PMID 26019724.{{cite journal}}: CS1 maint: DOI inactive as of February 2024 (link)
  • ^ McPherson, Andrew; Wu, Chunxiao; Wyatt, Alexander W.; Shah, Sohrab; Collins, Colin; Sahinalp, S. Cenk (28 June 2012). "nFuse: Discovery of complex genomic rearrangements in cancer using high-throughput sequencing". Genome Research. 22 (11): 2250–2261. doi:10.1101/gr.136572.111. ISSN 1088-9051. PMC 3483554. PMID 22745232.
  • ^ Torres-García, Wandaliz; Zheng, Siyuan; Sivachenko, Andrey; Vegesna, Rahulsimham; Wang, Qianghu; Yao, Rong; Berger, Michael F.; Weinstein, John N.; Getz, Gad; Verhaak, Roel G.W. (1 April 2014). "PRADA: pipeline for RNA sequencing data analysis". Bioinformatics. 30 (15): 2224–2226. doi:10.1093/bioinformatics/btu169. ISSN 1367-4811. PMC 4103589. PMID 24695405.
  • ^ Wu, Jikun; Zhang, Wenqian; Huang, Songbo; He, Zengquan; Cheng, Yanbing; Wang, Jun; Lam, Tak-Wah; Peng, Zhiyu; Yiu, Siu-Ming (11 October 2013). "SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads". Bioinformatics. 29 (23): 2971–2978. doi:10.1093/bioinformatics/btt522. ISSN 1367-4811. PMID 24123671.
  • ^ Kim, Daehwan; Salzberg, Steven L (2011). "TopHat-Fusion: an algorithm for discovery of novel fusion transcripts". Genome Biology. 12 (8): R72. doi:10.1186/gb-2011-12-8-r72. ISSN 1465-6906. PMC 3245612. PMID 21835007.
  • ^ Li, Jing-Woei; Wan, Raymond; Yu, Chi-Shing; Co, Ngai Na; Wong, Nathalie; Chan, Ting-Fung (12 January 2013). "ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution". Bioinformatics. 29 (5): 649–651. doi:10.1093/bioinformatics/btt011. ISSN 1367-4811. PMC 3582262. PMID 23314323.
  • ^ Routh A, Johnson JE (January 2014). "Discovery of functional genomic motifs in viruses with ViReMa-a Virus Recombination Mapper-for analysis of next-generation sequencing data". Nucleic Acids Research. 42 (2): e11. doi:10.1093/nar/gkt916. PMC 3902915. PMID 24137010.
  • ^ Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, Krzak M, et al. (November 2021). "Demystifying emerging bulk RNA-Seq applications: the application and utility of bioinformatic methodology". Briefings in Bioinformatics. 22 (6). doi:10.1093/bib/bbab259. PMID 34329375.
  • ^ Hashimshony T, Wagner F, Sher N, Yanai I (September 2012). "CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification". Cell Reports. 2 (3): 666–673. doi:10.1016/j.celrep.2012.08.003. PMID 22939981.
  • ^ Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. (May 2015). "Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets". Cell. 161 (5): 1202–1214. doi:10.1016/j.cell.2015.05.002. PMC 4481139. PMID 26000488.
  • ^ Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan GC (December 2014). "Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape". Proceedings of the National Academy of Sciences of the United States of America. 111 (52): E5643–E5650. Bibcode:2014PNAS..111E5643M. doi:10.1073/pnas.1408993111. PMC 4284553. PMID 25512504.
  • ^ Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. (February 2015). "Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells". Nature Biotechnology. 33 (2): 155–160. doi:10.1038/nbt.3102. PMID 25599176.
  • ^ Mohammed MH, Ghosh TS, Singh NK, Mande SS (January 2011). "SPHINX--an algorithm for taxonomic binning of metagenomic sequences". Bioinformatics. 27 (1): 22–30. doi:10.1093/bioinformatics/btq608. PMID 21030462.
  • ^ Stubbington MJ, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA (April 2016). "T cell fate and clonality inference from single-cell transcriptomes". Nature Methods. 13 (4): 329–332. doi:10.1038/nmeth.3800. PMC 4835021. PMID 26950746.
  • ^ Eltahla AA, Rizzetto S, Pirozyan MR, Betz-Stablein BD, Venturi V, Kedzierska K, et al. (July 2016). "Linking the T cell receptor to the single cell transcriptome in antigen-specific human T cells". Immunology and Cell Biology. 94 (6): 604–611. doi:10.1038/icb.2016.16. PMID 26860370. S2CID 25714515.
  • ^ Trapnell C. "Monocle 3". cole-trapnell-lab.github.io. Retrieved 23 September 2021.
  • ^ Wolf FA, Angerer P, Theis FJ (February 2018). "SCANPY: large-scale single-cell gene expression data analysis". Genome Biology. 19 (1): 15. doi:10.1186/s13059-017-1382-0. PMC 5802054. PMID 29409532.
  • ^ "Scanpy – Single-Cell Analysis in Python — Scanpy 1.8.1 documentation". scanpy.readthedocs.io. readthedocs.io. Retrieved 23 September 2021.
  • ^ Diaz A, Liu SJ, Sandoval C, Pollen A, Nowakowski TJ, Lim DA, Kriegstein A (July 2016). "SCell: integrated analysis of single-cell RNA-seq data". Bioinformatics. 32 (14): 2219–2220. doi:10.1093/bioinformatics/btw201. PMC 4937196. PMID 27153637.
  • ^ Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (June 2018). "Integrating single-cell transcriptomic data across different conditions, technologies, and species". Nature Biotechnology. 36 (5): 411–420. doi:10.1038/nbt.4096. PMC 6700744. PMID 29608179.
  • ^ Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. (June 2021). "Integrated analysis of multimodal single-cell data". Cell. 184 (13): 3573–3587.e29. doi:10.1016/j.cell.2021.04.048. PMC 8238499. PMID 34062119.
  • ^ Juliá M, Telenti A, Rausell A (October 2015). "Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq". Bioinformatics. 31 (20): 3380–3382. doi:10.1093/bioinformatics/btv368. PMC 4595899. PMID 26099264.
  • ^ Guo M, Wang H, Potter SS, Whitsett JA, Xu Y (November 2015). "SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis". PLOS Computational Biology. 11 (11): e1004575. Bibcode:2015PLSCB..11E4575G. doi:10.1371/journal.pcbi.1004575. PMC 4658017. PMID 26600239.
  • ^ Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA (February 2016). "Classification of low quality cells from single-cell RNA-seq data". Genome Biology. 17 (1): 29. doi:10.1186/s13059-016-0888-1. PMC 4758103. PMID 26887813.
  • ^ Leng N, Choi J, Chu LF, Thomson JA, Kendziorski C, Stewart R (May 2016). "OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data". Bioinformatics. 32 (9): 1408–1410. doi:10.1093/bioinformatics/btw004. PMC 4848403. PMID 26743507.
  • ^ Jiang P, Thomson JA, Stewart R (August 2016). "Quality control of single-cell RNA-seq by SinQC". Bioinformatics. 32 (16): 2514–2516. doi:10.1093/bioinformatics/btw176. PMC 4978927. PMID 27153613.
  • ^ Li H, Brouwer CR, Luo W (April 2022). "A universal deep neural network for in-depth cleaning of single-cell RNA-Seq data". Nature Communications. 13 (1): 1901. Bibcode:2022NatCo..13.1901L. doi:10.1038/s41467-022-29576-y. PMC 8990021. PMID 35393428.
  • ^ Vallejos CA, Marioni JC, Richardson S (June 2015). "BASiCS: Bayesian Analysis of Single-Cell Sequencing Data". PLOS Computational Biology. 11 (6): e1004333. Bibcode:2015PLSCB..11E4333V. doi:10.1371/journal.pcbi.1004333. PMC 4480965. PMID 26107944.
  • ^ Ding B, Zheng L, Zhu Y, Li N, Jia H, Ai R, et al. (July 2015). "Normalization and noise reduction for single cell RNA-seq experiments". Bioinformatics. 31 (13): 2225–2227. doi:10.1093/bioinformatics/btv122. PMC 4481848. PMID 25717193.
  • ^ Pierson E, Yau C (November 2015). "ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis". Genome Biology. 16 (241): 241. doi:10.1186/s13059-015-0805-z. PMC 4630968. PMID 26527291.
  • ^ Vu TN, Wills QF, Kalari KR, Niu N, Wang L, Rantalainen M, Pawitan Y (July 2016). "Beta-Poisson model for single-cell RNA-seq data analyses". Bioinformatics. 32 (14): 2128–2135. doi:10.1093/bioinformatics/btw202. PMID 27153638.
  • ^ Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. (December 2015). "MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data". Genome Biology. 16 (1): 278. doi:10.1186/s13059-015-0844-5. PMC 4676162. PMID 26653891.
  • ^ Kharchenko PV, Silberstein L, Scadden DT (July 2014). "Bayesian approach to single-cell differential expression analysis". Nature Methods. 11 (7): 740–742. doi:10.1038/nmeth.2967. PMC 4112276. PMID 24836921.
  • ^ Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, et al. (February 2015). "Bridger: a new framework for de novo transcriptome assembly using RNA-seq data". Genome Biology. 16 (1): 30. doi:10.1186/s13059-015-0596-2. PMC 4342890. PMID 25723335.
  • ^ Foroushani A, Agrahari R, Docking R, Chang L, Duns G, Hudoba M, et al. (March 2017). "Large-scale gene network analysis reveals the significance of extracellular matrix pathway and homeobox genes in acute myeloid leukemia: an introduction to the Pigengene package and its applications". BMC Medical Genomics. 10 (1): 16. doi:10.1186/s12920-017-0253-6. PMC 5353782. PMID 28298217.
  • ^ Quek C, Jung CH, Bellingham SA, Lonie A, Hill AF (2015). "iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data". Journal of Extracellular Vesicles. 4: 29454. doi:10.3402/jev.v4.29454. PMC 4641893. PMID 26561006.
  • ^ Kuksa PP, Amlie-Wolf A, Katanic Ž, Valladares O, Wang LS, Leung YY (July 2018). "SPAR: small RNA-seq portal for analysis of sequencing experiments". Nucleic Acids Research. 46 (W1): W36–W42. doi:10.1093/nar/gky330. PMC 6030839. PMID 29733404.
  • ^ Johnson NR, Yeoh JM, Coruh C, Axtell MJ (July 2016). "Improved Placement of Multi-mapping Small RNAs". G3. 6 (7): 2103–2111. doi:10.1534/g3.116.030452. PMC 4938663. PMID 27175019.
  • ^ Schmid-Burgk JL, Hornung V (November 2015). "BrowserGenome.org: web-based RNA-seq data analysis and visualization". Nature Methods. 12 (11): 1001. doi:10.1038/nmeth.3615. PMID 26513548. S2CID 205424303.
  • ^ Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, et al. (March 2013). "Using Tablet for visual exploration of second-generation sequencing data". Briefings in Bioinformatics. 14 (2): 193–202. doi:10.1093/bib/bbs012. PMID 22445902.
  • ^ Pirayre A, Couprie C, Duval L, Pesquet JC (2017). "BRANE Clust: Cluster-Assisted Gene Regulatory Network Inference Refinement". IEEE/ACM Transactions on Computational Biology and Bioinformatics (Submitted manuscript). 15 (3): 850–860. doi:10.1109/TCBB.2017.2688355. PMID 28368827. S2CID 12866368.
  • ^ Pirayre A, Couprie C, Bidard F, Duval L, Pesquet JC (November 2015). "BRANE Cut: biologically-related a priori network enhancement with graph cuts for gene regulatory network inference". BMC Bioinformatics. 16: 368. doi:10.1186/s12859-015-0754-2. PMC 4634801. PMID 26537179.
  • ^ Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ (May 2009). "GAGE: generally applicable gene set enrichment for pathway analysis". BMC Bioinformatics. 10 (161): 161. doi:10.1186/1471-2105-10-161. PMC 2696452. PMID 19473525.
  • ^ Subhash S, Kanduri C (September 2016). "GeneSCF: a real-time based functional enrichment tool with support for multiple organisms". BMC Bioinformatics. 17 (1): 365. doi:10.1186/s12859-016-1250-z. PMC 5020511. PMID 27618934.
  • ^ Rue-Albrecht K (2014). "Visualise microarray and RNAseq data using gene ontology annotations. R package version 1.4.1". GitHub.
  • ^ Young MD; Wakefield MJ; Smyth GK; Oshlack A (2010). "Gene ontology analysis for RNA-seq: accounting for selection bias". Genome Biology. 11 (2): R14. doi:10.1186/gb-2010-11-2-r14. PMC 2872874. PMID 20132535.
  • ^ Xiong Q, Mukherjee S, Furey TS (September 2014). "GSAASeqSP: a toolset for gene set association analysis of RNA-Seq data". Scientific Reports. 4 (6347): 6347. Bibcode:2014NatSR...4E6347X. doi:10.1038/srep06347. PMC 4161965. PMID 25213199.
  • ^ Hänzelmann S, Castelo R, Guinney J (January 2013). "GSVA: gene set variation analysis for microarray and RNA-seq data". BMC Bioinformatics. 14 (17): 7. doi:10.1186/1471-2105-14-7. PMC 3618321. PMID 23323831.
  • ^ Zhou YH (March 2016). "Pathway analysis for RNA-Seq data using a score-based approach". Biometrics. 72 (1): 165–174. doi:10.1111/biom.12372. PMC 4992401. PMID 26259845.
  • ^ Ihnatova I, Budinska E (October 2015). "ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data". BMC Bioinformatics. 16 (350): 350. doi:10.1186/s12859-015-0763-1. PMC 4625615. PMID 26514335.
  • ^ Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K (December 2013). "TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes". Genome Biology. 14 (12): R134. doi:10.1186/gb-2013-14-12-r134. PMC 4053847. PMID 24330842.
  • ^ Bucchini F, Del Cortona A, Kreft Ł, Botzki A, Van Bel M, Vandepoele K (September 2021). "TRAPID 2.0: a web application for taxonomic and functional analysis of de novo transcriptomes". Nucleic Acids Research. 49 (17): e101. doi:10.1093/nar/gkab565. PMC 8464036. PMID 34197621.
  • ^ de Jong A, van der Meulen S, Kuipers OP, Kok J (September 2015). "T-REx: Transcriptome analysis webserver for RNA-seq Expression data". BMC Genomics. 16 (663): 663. doi:10.1186/s12864-015-1834-4. PMC 4558784. PMID 26335208.
  • ^ Lan D, Llamas B (14 September 2022). "Genozip 14 - advances in compression of BAM and CRAM files". bioRxiv. doi:10.1101/2022.09.12.507582. S2CID 252357508.
  • ^ Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. (September 2014). "An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex". The Journal of Neuroscience. 34 (36): 11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014. PMC 4152602. PMID 25186741.
  • ^ Wang Y, Wu N, Liu J, Wu Z, Dong D (July 2015). "FusionCancer: a database of cancer fusion genes derived from RNA-seq data". Diagnostic Pathology. 10 (131): 131. doi:10.1186/s13000-015-0310-4. PMC 4517624. PMID 26215638.
  • ^ Franzén O, Gan LM, Björkegren JL (January 2019). "PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data". Database. 2019. doi:10.1093/database/baz046. PMC 6450036. PMID 30951143.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_RNA-Seq_bioinformatics_tools&oldid=1228261538"

    Categories: 
    Genetics-related lists
    Lists of software
    RNA sequencing
    Hidden categories: 
    CS1 errors: missing periodical
    CS1 maint: DOI inactive as of February 2024
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from September 2021
    Use dmy dates from April 2017
     



    This page was last edited on 10 June 2024, at 08:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki