Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Proof  





3 Generalizations  





4 Applications  





5 Notes  





6 References  














Log sum inequality






Ελληνικά
فارسی
Français

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The log sum inequality is used for proving theorems in information theory.

Statement[edit]

Let and be nonnegative numbers. Denote the sum of all s by and the sum of all s by . The log sum inequality states that

with equality if and only if are equal for all , in other words for all .[1]

(Take to be if and if. These are the limiting values obtained as the relevant number tends to .)[1]

Proof[edit]

Notice that after setting we have

where the inequality follows from Jensen's inequality since , , and is convex.[1]

Generalizations[edit]

The inequality remains valid for provided that and .[citation needed] The proof above holds for any function such that is convex, such as all continuous non-decreasing functions. Generalizations to non-decreasing functions other than the logarithm is given in Csiszár, 2004.

Another generalization is due to Dannan, Neff and Thiel, who showed that if and are positive real numbers with and , and , then . [2]

Applications[edit]

The log sum inequality can be used to prove inequalities in information theory. Gibbs' inequality states that the Kullback-Leibler divergence is non-negative, and equal to zero precisely if its arguments are equal.[3] One proof uses the log sum inequality.

The inequality can also prove convexity of Kullback-Leibler divergence.[4]

Notes[edit]

  1. ^ a b c d Cover & Thomas (1991), p. 29.
  • ^ F. M. Dannan, P. Neff, C. Thiel (2016). "On the sum of squared logarithms inequality and related inequalities" (PDF). Journal of Mathematical Inequalities. 10 (1): 1–17. doi:10.7153/jmi-10-01. S2CID 23953925. Retrieved 12 January 2023.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  • ^ MacKay (2003), p. 34.
  • ^ Cover & Thomas (1991), p. 30.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Log_sum_inequality&oldid=1222903390"

    Categories: 
    Inequalities
    Information theory
    Hidden categories: 
    CS1 maint: multiple names: authors list
    All articles with unsourced statements
    Articles with unsourced statements from July 2020
    Articles containing proofs
     



    This page was last edited on 8 May 2024, at 16:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki