Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Geometric definition  







2 Gradation  





3 Derivation  





4 Loop group  





5 Affine Lie algebras as central extension of loop algebras  



5.1  Cocycle  





5.2  Affine Lie algebra  







6 References  














Loop algebra







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, loop algebras are certain types of Lie algebras, of particular interest in theoretical physics.

Definition[edit]

For a Lie algebra over a field , if is the space of Laurent polynomials, then

with the inherited bracket

Geometric definition[edit]

If is a Lie algebra, the tensor productof with C(S1), the algebra of (complex) smooth functions over the circle manifold S1 (equivalently, smooth complex-valued periodic functions of a given period),

is an infinite-dimensional Lie algebra with the Lie bracket given by

Here g1 and g2 are elements of and f1 and f2 are elements of C(S1).

This isn't precisely what would correspond to the direct product of infinitely many copies of , one for each point in S1, because of the smoothness restriction. Instead, it can be thought of in terms of smooth map from S1to; a smooth parametrized loop in , in other words. This is why it is called the loop algebra.

Gradation[edit]

Defining to be the linear subspace the bracket restricts to a product

hence giving the loop algebra a -graded Lie algebra structure.

In particular, the bracket restricts to the 'zero-mode' subalgebra .

Derivation[edit]

There is a natural derivation on the loop algebra, conventionally denoted acting as

and so can be thought of formally as .

It is required to define affine Lie algebras, which are used in physics, particularly conformal field theory.

Loop group[edit]

Similarly, a set of all smooth maps from S1 to a Lie group G forms an infinite-dimensional Lie group (Lie group in the sense we can define functional derivatives over it) called the loop group. The Lie algebra of a loop group is the corresponding loop algebra.

Affine Lie algebras as central extension of loop algebras[edit]

If is a semisimple Lie algebra, then a nontrivial central extension of its loop algebra gives rise to an affine Lie algebra. Furthermore this central extension is unique.[1]

The central extension is given by adjoining a central element , that is, for all ,

and modifying the bracket on the loop algebra to
where is the Killing form.

The central extension is, as a vector space, (in its usual definition, as more generally, can be taken to be an arbitrary field).

Cocycle[edit]

Using the language of Lie algebra cohomology, the central extension can be described using a 2-cocycle on the loop algebra. This is the map

satisfying
Then the extra term added to the bracket is

Affine Lie algebra[edit]

In physics, the central extension is sometimes referred to as the affine Lie algebra. In mathematics, this is insufficient, and the full affine Lie algebra is the vector space[2]

where is the derivation defined above.

On this space, the Killing form can be extended to a non-degenerate form, and so allows a root system analysis of the affine Lie algebra.

References[edit]

  1. ^ Kac, V.G. (1990). Infinite-dimensional Lie algebras (3rd ed.). Cambridge University Press. Exercise 7.8. ISBN 978-0-521-37215-2.
  • ^ P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN 0-387-94785-X
    • Fuchs, Jurgen (1992), Affine Lie Algebras and Quantum Groups, Cambridge University Press, ISBN 0-521-48412-X


  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Loop_algebra&oldid=1223586817"

    Categories: 
    Lie algebras
    Algebra stubs
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All stub articles
     



    This page was last edited on 13 May 2024, at 03:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki