Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Markov tree  





2 Other properties  





3 Markov's theorem  





4 Matrices  





5 See also  





6 Notes  





7 References  














Markov number






العربية
Deutsch
Ελληνικά
Español
Français

Italiano
Nederlands

Română
Русский
Slovenščina
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Markov numberorMarkoff number is a positive integer x, yorz that is part of a solution to the Markov Diophantine equation

studied by Andrey Markoff (1879, 1880).

The first few Markov numbers are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, ... (sequence A002559 in the OEIS)

appearing as coordinates of the Markov triples

(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), ...

There are infinitely many Markov numbers and Markov triples.

Markov tree

[edit]
The first levels of the Markov number tree

There are two simple ways to obtain a new Markov triple from an old one (xyz). First, one may permute the 3 numbers x,y,z, so in particular one can normalize the triples so that x ≤ y ≤ z. Second, if (xyz) is a Markov triple then so is (xy3xy − z). Applying this operation twice returns the same triple one started with. Joining each normalized Markov triple to the 1, 2, or 3 normalized triples one can obtain from this gives a graph starting from (1,1,1) as in the diagram. This graph is connected; in other words every Markov triple can be connected to (1,1,1) by a sequence of these operations.[1] If one starts, as an example, with (1, 5, 13) we get its three neighbors (5, 13, 194), (1, 13, 34) and (1, 2, 5) in the Markov tree if z is set to 1, 5 and 13, respectively. For instance, starting with (1, 1, 2) and trading y and z before each iteration of the transform lists Markov triples with Fibonacci numbers. Starting with that same triplet and trading x and z before each iteration gives the triples with Pell numbers.

All the Markov numbers on the regions adjacent to 2's region are odd-indexed Pell numbers (or numbers n such that 2n2 − 1 is a square, OEISA001653), and all the Markov numbers on the regions adjacent to 1's region are odd-indexed Fibonacci numbers (OEISA001519). Thus, there are infinitely many Markov triples of the form

where Fk is the kthFibonacci number. Likewise, there are infinitely many Markov triples of the form

where Pk is the kthPell number.[2]

Other properties

[edit]

Aside from the two smallest singular triples (1, 1, 1) and (1, 1, 2), every Markov triple consists of three distinct integers.[3]

The unicity conjecture, as remarked by Frobenius in 1913,[4] states that for a given Markov number c, there is exactly one normalized solution having c as its largest element: proofs of this conjecture have been claimed but none seems to be correct.[5] Martin Aigner[6] examines several weaker variants of the unicity conjecture. His fixed numerator conjecture was proved by Rabideau and Schiffler in 2020,[7] while the fixed denominator conjecture and fixed sum conjecture were proved by Lee, Li, Rabideau and Schiffler in 2023.[8]

Odd Markov numbers are 1 more than multiples of 4, while even Markov numbers are 2 more than multiples of 32.[9]

In his 1982 paper, Don Zagier conjectured that the nth Markov number is asymptotically given by

The error is plotted below.

Error in the approximation of large Markov numbers

Moreover, he pointed out that , an approximation of the original Diophantine equation, is equivalent to with f(t) = arcosh(3t/2).[10] The conjecture was proved [disputeddiscuss]byGreg McShane and Igor Rivin in 1995 using techniques from hyperbolic geometry.[11]

The nthLagrange number can be calculated from the nth Markov number with the formula

The Markov numbers are sums of (non-unique) pairs of squares.

Markov's theorem

[edit]

Markoff (1879, 1880) showed that if

is an indefinite binary quadratic form with real coefficients and discriminant , then there are integers xy for which f takes a nonzero value of absolute value at most

unless f is a Markov form:[12] a constant times a form

such that

where (pqr) is a Markov triple.

Matrices

[edit]

Let tr denote the trace function over matrices. If X and Y are in SL2(), then

so that if then

In particular if X and Y also have integer entries then tr(X)/3, tr(Y)/3, and tr(XY)/3 are a Markov triple. If XYZ = I then tr(XtY) = tr(Z), so more symmetrically if X, Y, and Z are in SL2() with XYZ = I and the commutator of two of them has trace −2, then their traces/3 are a Markov triple.[13]

See also

[edit]

Notes

[edit]
  1. ^ Cassels (1957) p.28
  • ^ OEISA030452 lists Markov numbers that appear in solutions where one of the other two terms is 5.
  • ^ Cassels (1957) p.27
  • ^ Frobenius, G. (1913). "Über die Markoffschen Zahlen". S. B. Preuss Akad. Wiss.: 458–487.
  • ^ Guy (2004) p.263
  • ^ Aigner, Martin (2013-07-29). Markov's Theorem and 100 Years of the Uniqueness Conjecture: A Mathematical Journey from Irrational Numbers to Perfect Matchings. Cham Heidelberg: Springer. ISBN 978-3-319-00887-5.
  • ^ Rabideau, Michelle; Schiffler, Ralf (2020). "Continued fractions and orderings on the Markov numbers". Advances in Mathematics. 370: 107231. arXiv:1801.07155. doi:10.1016/j.aim.2020.107231.
  • ^ Lee, Kyungyong; Li, Li; Rabideau, Michelle; Schiffler, Ralf (2023). "On the ordering of the Markov numbers". Advances in Applied Mathematics. 143: 102453. doi:10.1016/j.aam.2022.102453.
  • ^ Zhang, Ying (2007). "Congruence and Uniqueness of Certain Markov Numbers". Acta Arithmetica. 128 (3): 295–301. arXiv:math/0612620. Bibcode:2007AcAri.128..295Z. doi:10.4064/aa128-3-7. MR 2313995. S2CID 9615526.
  • ^ Zagier, Don B. (1982). "On the Number of Markoff Numbers Below a Given Bound". Mathematics of Computation. 160 (160): 709–723. doi:10.2307/2007348. JSTOR 2007348. MR 0669663.
  • ^ Greg McShane; Igor Rivin (1995). "Simple curves on hyperbolic tori". Comptes Rendus de l'Académie des Sciences, Série I. 320 (12).
  • ^ Cassels (1957) p.39
  • ^ Aigner, Martin (2013), "The Cohn tree", Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, pp. 63–77, doi:10.1007/978-3-319-00888-2_4, ISBN 978-3-319-00887-5, MR 3098784.
  • References

    [edit]
    Markoff, A. (1879). "First memoir". Mathematische Annalen. 15 (3–4): 381–406. doi:10.1007/BF02086269. S2CID 179177894.
    Markoff, A. (1880). "Second memoir". Mathematische Annalen. 17 (3): 379–399. doi:10.1007/BF01446234. S2CID 121616054.

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Markov_number&oldid=1204988165"

    Categories: 
    Diophantine equations
    Diophantine approximation
    Fibonacci numbers
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All accuracy disputes
    Articles with disputed statements from July 2016
     



    This page was last edited on 8 February 2024, at 15:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki