Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Newtonian potential






Español
Français
Português
Русский
Slovenščina
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Newtonian potentialorNewton potential is an operatorinvector calculus that acts as the inverse to the negative Laplacian, on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object of study in potential theory. In its general nature, it is a singular integral operator, defined by convolution with a function having a mathematical singularity at the origin, the Newtonian kernel which is the fundamental solution of the Laplace equation. It is named for Isaac Newton, who first discovered it and proved that it was a harmonic function in the special case of three variables, where it served as the fundamental gravitational potentialinNewton's law of universal gravitation. In modern potential theory, the Newtonian potential is instead thought of as an electrostatic potential.

The Newtonian potential of a compactly supported integrable function is defined as the convolution where the Newtonian kernel in dimension is defined by

Here ωd is the volume of the unit d-ball (sometimes sign conventions may vary; compare (Evans 1998) and (Gilbarg & Trudinger 1983)). For example, for we have

The Newtonian potential woff is a solution of the Poisson equation which is to say that the operation of taking the Newtonian potential of a function is a partial inverse to the Laplace operator. Then w will be a classical solution, that is twice differentiable, if f is bounded and locally Hölder continuous as shown by Otto Hölder. It was an open question whether continuity alone is also sufficient. This was shown to be wrong by Henrik Petrini who gave an example of a continuous f for which w is not twice differentiable. The solution is not unique, since addition of any harmonic function to w will not affect the equation. This fact can be used to prove existence and uniqueness of solutions to the Dirichlet problem for the Poisson equation in suitably regular domains, and for suitably well-behaved functions f: one first applies a Newtonian potential to obtain a solution, and then adjusts by adding a harmonic function to get the correct boundary data.

The Newtonian potential is defined more broadly as the convolution when μ is a compactly supported Radon measure. It satisfies the Poisson equation in the sense of distributions. Moreover, when the measure is positive, the Newtonian potential is subharmoniconRd.

Iff is a compactly supported continuous function (or, more generally, a finite measure) that is rotationally invariant, then the convolution of f with Γ satisfies for x outside the support of f

In dimension d = 3, this reduces to Newton's theorem that the potential energy of a small mass outside a much larger spherically symmetric mass distribution is the same as if all of the mass of the larger object were concentrated at its center.

When the measure μ is associated to a mass distribution on a sufficiently smooth hypersurface S (aLyapunov surfaceofHölder class C1,α) that divides Rd into two regions D+ and D, then the Newtonian potential of μ is referred to as a simple layer potential. Simple layer potentials are continuous and solve the Laplace equation except on S. They appear naturally in the study of electrostatics in the context of the electrostatic potential associated to a charge distribution on a closed surface. If dμ = fdH is the product of a continuous function on S with the (d − 1)-dimensional Hausdorff measure, then at a point yofS, the normal derivative undergoes a jump discontinuity f(y) when crossing the layer. Furthermore, the normal derivative of w is a well-defined continuous function on S. This makes simple layers particularly suited to the study of the Neumann problem for the Laplace equation.

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Newtonian_potential&oldid=1224916918"

Categories: 
Harmonic functions
Isaac Newton
Partial differential equations
Potential theory
Singular integrals
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 21 May 2024, at 07:56 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki