Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 Relationship to the Dirac delta distribution  





3 Summation  





4 Series expansion  





5 Higher dimensions  





6 See also  





7 References  





8 External links  














Sinc function






العربية
Català
Čeština
Deutsch
Eesti
Español
Esperanto
فارسی
Français

Italiano
עברית
Magyar
Nederlands

Norsk nynorsk

Polski
Português
Русский
Slovenčina
Svenska
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Normalized sinc function)

Inmathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.[1]

Sinc
Part of the normalized and unnormalized sinc function shown on the same scale
Part of the normalized sinc (blue) and unnormalized sinc function (red) shown on the same scale
General information
General definition
Motivation of inventionTelecommunication
Date of solution1952
Fields of applicationSignal processing, spectroscopy
Domain, codomain and image
Domain
Image
Basic features
ParityEven
Specific values
At zero1
Value at +∞0
Value at −∞0
Maxima1 at
Minimaat
Specific features
Root
Related functions
Reciprocal
Derivative
Antiderivative
Series definition
Taylor series
The sinc function as audio, at 2000 Hz (±1.5 seconds around zero)

In mathematics, the historical unnormalized sinc function is defined for x ≠ 0by

Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x).[2]

Indigital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0by

In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).

The normalization causes the definite integral of the function over the real numbers to equal 1 (whereas the same integral of the unnormalized sinc function has a value of π). As a further useful property, the zeros of the normalized sinc function are the nonzero integer values of x.

The normalized sinc function is the Fourier transform of the rectangular function with no scaling. It is used in the concept of reconstructing a continuous bandlimited signal from uniformly spaced samples of that signal.

The only difference between the two definitions is in the scaling of the independent variable (the x axis) by a factor of π. In both cases, the value of the function at the removable singularity at zero is understood to be the limit value 1. The sinc function is then analytic everywhere and hence an entire function.

The function has also been called the cardinal sineorsine cardinal function.[3][4] The term sinc /ˈsɪŋk/ was introduced by Philip M. Woodward in his 1952 article "Information theory and inverse probability in telecommunication", in which he said that the function "occurs so often in Fourier analysis and its applications that it does seem to merit some notation of its own",[5] and his 1953 book Probability and Information Theory, with Applications to Radar.[6][7] The function itself was first mathematically derived in this form by Lord Rayleigh in his expression (Rayleigh's formula) for the zeroth-order spherical Bessel function of the first kind.

Properties[edit]

The local maxima and minima (small white dots) of the unnormalized, red sinc function correspond to its intersections with the blue cosine function.

The zero crossings of the unnormalized sinc are at non-zero integer multiples of π, while zero crossings of the normalized sinc occur at non-zero integers.

The local maxima and minima of the unnormalized sinc correspond to its intersections with the cosine function. That is, sin(ξ)/ξ = cos(ξ) for all points ξ where the derivative of sin(x)/x is zero and thus a local extremum is reached. This follows from the derivative of the sinc function:

The first few terms of the infinite series for the x coordinate of the n-th extremum with positive x coordinate are where and where odd n lead to a local minimum, and even n to a local maximum. Because of symmetry around the y axis, there exist extrema with x coordinates xn. In addition, there is an absolute maximum at ξ0 = (0, 1).

The normalized sinc function has a simple representation as the infinite product:

The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i
The cardinal sine function sinc(z) plotted in the complex plane from -2-2i to 2+2i

and is related to the gamma function Γ(x) through Euler's reflection formula:

Euler discovered[8] that and because of the product-to-sum identity[9]

Domain coloring plot of sinc z = sin z/z

Euler's product can be recast as a sum

The continuous Fourier transform of the normalized sinc (to ordinary frequency) is rect(f): where the rectangular function is 1 for argument between −1/2 and 1/2, and zero otherwise. This corresponds to the fact that the sinc filter is the ideal (brick-wall, meaning rectangular frequency response) low-pass filter.

This Fourier integral, including the special case is an improper integral (see Dirichlet integral) and not a convergent Lebesgue integral, as

The normalized sinc function has properties that make it ideal in relationship to interpolationofsampled bandlimited functions:

Other properties of the two sinc functions include:

Relationship to the Dirac delta distribution[edit]

The normalized sinc function can be used as a nascent delta function, meaning that the following weak limit holds:

This is not an ordinary limit, since the left side does not converge. Rather, it means that

for every Schwartz function, as can be seen from the Fourier inversion theorem. In the above expression, as a → 0, the number of oscillations per unit length of the sinc function approaches infinity. Nevertheless, the expression always oscillates inside an envelope of ±1/πx, regardless of the value of a.

This complicates the informal picture of δ(x) as being zero for all x except at the point x = 0, and illustrates the problem of thinking of the delta function as a function rather than as a distribution. A similar situation is found in the Gibbs phenomenon.

Summation[edit]

All sums in this section refer to the unnormalized sinc function.

The sum of sinc(n) over integer n from 1 to equals π − 1/2:

The sum of the squares also equals π − 1/2:[10][11]

When the signs of the addends alternate and begin with +, the sum equals 1/2:

The alternating sums of the squares and cubes also equal 1/2:[12]

Series expansion[edit]

The Taylor series of the unnormalized sinc function can be obtained from that of the sine (which also yields its value of 1 at x = 0):

The series converges for all x. The normalized version follows easily:

Euler famously compared this series to the expansion of the infinite product form to solve the Basel problem.

Higher dimensions[edit]

The product of 1-D sinc functions readily provides a multivariate sinc function for the square Cartesian grid (lattice): sincC(x, y) = sinc(x) sinc(y), whose Fourier transform is the indicator function of a square in the frequency space (i.e., the brick wall defined in 2-D space). The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a non-Cartesian lattice this function can not be obtained by a simple tensor product. However, the explicit formula for the sinc function for the hexagonal, body-centered cubic, face-centered cubic and other higher-dimensional lattices can be explicitly derived[13] using the geometric properties of Brillouin zones and their connection to zonotopes.

For example, a hexagonal lattice can be generated by the (integer) linear span of the vectors

Denoting one can derive[13] the sinc function for this hexagonal lattice as

This construction can be used to design Lanczos window for general multidimensional lattices.[13]

See also[edit]

References[edit]

  1. ^ Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Numerical methods", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248..
  • ^ Singh, R. P.; Sapre, S. D. (2008). Communication Systems, 2E (illustrated ed.). Tata McGraw-Hill Education. p. 15. ISBN 978-0-07-063454-1. Extract of page 15
  • ^ Weisstein, Eric W. "Sinc Function". mathworld.wolfram.com. Retrieved 2023-06-07.
  • ^ Merca, Mircea (2016-03-01). "The cardinal sine function and the Chebyshev–Stirling numbers". Journal of Number Theory. 160: 19–31. doi:10.1016/j.jnt.2015.08.018. ISSN 0022-314X. S2CID 124388262.
  • ^ Woodward, P. M.; Davies, I. L. (March 1952). "Information theory and inverse probability in telecommunication" (PDF). Proceedings of the IEE – Part III: Radio and Communication Engineering. 99 (58): 37–44. doi:10.1049/pi-3.1952.0011.
  • ^ Poynton, Charles A. (2003). Digital video and HDTV. Morgan Kaufmann Publishers. p. 147. ISBN 978-1-55860-792-7.
  • ^ Woodward, Phillip M. (1953). Probability and information theory, with applications to radar. London: Pergamon Press. p. 29. ISBN 978-0-89006-103-9. OCLC 488749777.
  • ^ Euler, Leonhard (1735). "On the sums of series of reciprocals". arXiv:math/0506415.
  • ^ Luis Ortiz-Gracia; Cornelis W. Oosterlee (2016). "A highly efficient Shannon wavelet inverse Fourier technique for pricing European options". SIAM J. Sci. Comput. 38 (1): B118–B143. Bibcode:2016SJSC...38B.118O. doi:10.1137/15M1014164. hdl:2072/377498.
  • ^ "Advanced Problem 6241". American Mathematical Monthly. 87 (6). Washington, DC: Mathematical Association of America: 496–498. June–July 1980. doi:10.1080/00029890.1980.11995075.
  • ^ Robert Baillie; David Borwein; Jonathan M. Borwein (December 2008). "Surprising Sinc Sums and Integrals". American Mathematical Monthly. 115 (10): 888–901. doi:10.1080/00029890.2008.11920606. hdl:1959.13/940062. JSTOR 27642636. S2CID 496934.
  • ^ Baillie, Robert (2008). "Fun with Fourier series". arXiv:0806.0150v2 [math.CA].
  • ^ a b c Ye, W.; Entezari, A. (June 2012). "A Geometric Construction of Multivariate Sinc Functions". IEEE Transactions on Image Processing. 21 (6): 2969–2979. Bibcode:2012ITIP...21.2969Y. doi:10.1109/TIP.2011.2162421. PMID 21775264. S2CID 15313688.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sinc_function&oldid=1224573154"

    Categories: 
    Signal processing
    Elementary special functions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use American English from March 2019
    All Wikipedia articles written in American English
     



    This page was last edited on 19 May 2024, at 04:50 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki