Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Applications  





3 Advantages and disadvantages  



3.1  Advantages  





3.2  Disadvantages  







4 See also  





5 References  














Naturally aspirated engine






العربية
Dansk
Deutsch
Español
فارسی
Français
Bahasa Indonesia
Bahasa Melayu

Norsk bokmål
Português
Simple English
Slovenčina
Slovenščina
Suomi
Svenska
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Normally aspirated)

Typical airflow in a four-stroke engine:
In stroke #1, the pistons suck in (aspirate) air to the combustion chamber through the opened inlet valve.

Anaturally aspirated engine, also known as a normally aspirated engine, and abbreviated to N/AorNA, is an internal combustion engine in which air intake depends solely on atmospheric pressure and does not have forced induction through a turbocharger or a supercharger.[1]

Description[edit]

In a naturally aspirated engine, air for combustion (Diesel cycle in a diesel engine or specific types of Otto cycle in petrol engines, namely petrol direct injection) or an air/fuel mixture (traditional Otto cycle petrol engines), is drawn into the engine's cylinders by atmospheric pressure acting against a partial vacuum that occurs as the piston travels downwards toward bottom dead centre during the intake stroke. Owing to innate restriction in the engine's inlet tract, which includes the intake manifold, a small pressure drop occurs as air is drawn in, resulting in a volumetric efficiency of less than 100 percent—and a less than complete air charge in the cylinder. The density of the air charge, and therefore the engine's maximum theoretical power output, in addition to being influenced by induction system restriction, is also affected by engine speed and atmospheric pressure, the latter of which decreases as the operating altitude increases.

This is in contrast to a forced-induction engine, in which a mechanically driven supercharger or an exhaust-driven turbocharger is employed to facilitate increasing the mass of intake air beyond what could be produced by atmospheric pressure alone. Nitrous oxide can also be used to artificially increase the mass of oxygen present in the intake air. This is accomplished by injecting liquid nitrous oxide into the intake, which supplies significantly more oxygen in a given volume than is possible with atmospheric air. Nitrous oxide is 36.3% available oxygen by mass after it decomposes as compared with atmospheric air at 20.95%. Nitrous oxide also boils at −127.3 °F (−88.5 °C) at atmospheric pressures and offers significant cooling from the latent heat of vaporization, which also aids in increasing the overall air charge density significantly compared to natural aspiration.

Applications[edit]

Most automobile petrol engines, as well as many small engines used for non-automotive purposes, are naturally aspirated.[2] Most modern diesel engines powering highway vehicles are turbocharged to produce a more favourable power-to-weight ratio, a higher torque curve, as well as better fuel efficiency and lower exhaust emissions. Turbocharging is nearly universal on diesel engines that are used in railroad, marine engines, and commercial stationary applications (electrical power generation, for example). Forced induction is also used with reciprocating aircraft engines to negate some of the power loss that occurs as the aircraft climbs to higher altitudes.

Advantages and disadvantages[edit]

The advantages and disadvantages of a naturally aspirated engine in relation to a same-sized engine relying on forced induction include:

Advantages[edit]

Disadvantages[edit]

See also[edit]

References[edit]

  1. ^ "What is a normally aspirated engine?". ask.cars.com. 2008-09-02. Archived from the original on 2013-06-22. Retrieved 2015-10-18.
  • ^ "What is a Naturally Aspirated Engine ?". Private Fleet. Retrieved 2017-02-17. Most motor vehicle engines are naturally-aspirated engines; however, turbocharging and supercharging are currently a very popular way of boosting power output for a number car marques.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Naturally_aspirated_engine&oldid=1179634667"

    Categories: 
    Engine technology
    Internal combustion engine
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 11 October 2023, at 12:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki