Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 Types of strings  



2.1  Closed and open strings  





2.2  Orientation  







3 See also  





4 References  














String (physics)






العربية
Беларуская
Български
Català
Чӑвашла
Eesti
Español
Français
Gaeilge

Հայերեն
Bahasa Indonesia
Italiano
עברית
Қазақша
Lietuvių

Русский
Simple English
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Open string (physics))

String vibrations

Inphysics, a string is a physical entity postulated in string theory and related subjects. Unlike elementary particles, which are zero-dimensional or point-like by definition, strings are one-dimensional extended entities. Researchers often have an interest in string theories because theories in which the fundamental entities are strings rather than point particles automatically have many properties that some physicists expect to hold in a fundamental theory of physics. Most notably, a theory of strings that evolve and interact according to the rules of quantum mechanics will automatically describe quantum gravity.

Overview[edit]

In string theory, the strings may be open (forming a segment with two endpoints) or closed (forming a loop like a circle) and may have other special properties.[1] Prior to 1995, there were five known versions of string theory incorporating the idea of supersymmetry (these five are known as superstring theories) and two versions without supersymmetry known as bosonic string theories, which differed in the type of strings and in other aspects. Today these different superstring theories are thought to arise as different limiting cases of a single theory called M-theory.

In string theories of particle physics, the strings are very tiny; much smaller than can be observed in today's particle accelerators. The characteristic length scale of strings is typically on the order of the Planck length, about 10−35 meter, the scale at which the effects of quantum gravity are believed to become significant. Therefore on much larger length scales, such as the scales visible in physics laboratories, such entities would appear to be zero-dimensional point particles. Strings are able to vibrate as harmonic oscillators, and different vibrational states of the same string are interpreted as different types of particles. In string theories, strings vibrating at different frequencies constitute the multiple fundamental particles found in the current Standard Model of particle physics. Strings are also sometimes studied in nuclear physics where they are used to model flux tubes.

As the string propagates through spacetime, a string sweeps out a two-dimensional surface called its worldsheet. This is analogous to the one-dimensional worldline traced out by a point particle. The physics of a string is described by means of a two-dimensional conformal field theory associated with the worldsheet. The formalism of two-dimensional conformal field theory also has many applications outside of string theory, for example in condensed matter physics and parts of pure mathematics.

Types of strings[edit]

Closed and open strings[edit]

Strings can be either open or closed. A closed string is a string that has no end-points, and therefore is topologically equivalent to a circle. An open string, on the other hand, has two end-points and is topologically equivalent to a line interval. Not all string theories contain open strings, but every theory must contain closed strings, as interactions between open strings can always result in closed strings.

The oldest superstring theory containing open strings was type I string theory. However, the developments in string theory in the 1990s have shown that the open strings should always be thought of as ending on a new physical degree of freedom called D-branes, and the spectrum of possibilities for open strings has significantly increased.

Open and closed strings are generally associated with characteristic vibrational modes. One of the vibration modes of a closed string can be identified as the graviton. In certain string theories, the lowest-energy vibration of an open string is a tachyon and can undergo tachyon condensation. Other vibrational modes of open strings exhibit the properties of photons and gluons.

Orientation[edit]

Strings can also possess an orientation, which can be thought of as an internal "arrow" that distinguishes the string from one with the opposite orientation. By contrast, an unoriented string is one with no such arrow on it.

See also[edit]

References[edit]

  1. ^ Polchinski, Joseph Gerard (2004). String theory. Vol. 1: An introduction to the bosonic string / Joseph Polchinski (Reprint ed.). Cambridge: Cambridge Univ. Press. ISBN 978-0521633031.

Retrieved from "https://en.wikipedia.org/w/index.php?title=String_(physics)&oldid=1217550421#Closed_and_open_strings"

Category: 
String theory
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles needing additional references from July 2023
All articles needing additional references
Articles needing additional references from April 2024
 



This page was last edited on 6 April 2024, at 13:52 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki