Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Two-dimensional parabolic coordinates  





2 Two-dimensional scale factors  





3 Three-dimensional parabolic coordinates  





4 Three-dimensional scale factors  





5 See also  





6 Bibliography  





7 External links  














Parabolic coordinates






Deutsch
Español
Français
Magyar
Português
Русский
Српски / srpski
Suomi

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In green, confocal parabolae opening upwards, In red, confocal parabolae opening downwards,

Parabolic coordinates are a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal parabolas. A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas.

Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.

Two-dimensional parabolic coordinates

[edit]

Two-dimensional parabolic coordinates are defined by the equations, in terms of Cartesian coordinates:

The curves of constant form confocal parabolae

that open upwards (i.e., towards ), whereas the curves of constant form confocal parabolae

that open downwards (i.e., towards ). The foci of all these parabolae are located at the origin.

The Cartesian coordinates and can be converted to parabolic coordinates by:

Two-dimensional scale factors

[edit]

The scale factors for the parabolic coordinates are equal

Hence, the infinitesimal element of area is

and the Laplacian equals

Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates.

Three-dimensional parabolic coordinates

[edit]
Coordinate surfaces of the three-dimensional parabolic coordinates. The red paraboloid corresponds to τ=2, the blue paraboloid corresponds to σ=1, and the yellow half-plane corresponds to φ=-60°. The three surfaces intersect at the point P (shown as a black sphere) with Cartesian coordinates roughly (1.0, -1.732, 1.5).

The two-dimensional parabolic coordinates form the basis for two sets of three-dimensional orthogonal coordinates. The parabolic cylindrical coordinates are produced by projecting in the -direction. Rotation about the symmetry axis of the parabolae produces a set of confocal paraboloids, the coordinate system of tridimensional parabolic coordinates. Expressed in terms of cartesian coordinates:

where the parabolae are now aligned with the -axis, about which the rotation was carried out. Hence, the azimuthal angle is defined

The surfaces of constant form confocal paraboloids

that open upwards (i.e., towards ) whereas the surfaces of constant form confocal paraboloids

that open downwards (i.e., towards ). The foci of all these paraboloids are located at the origin.

The Riemannian metric tensor associated with this coordinate system is

Three-dimensional scale factors

[edit]

The three dimensional scale factors are:

It is seen that the scale factors and are the same as in the two-dimensional case. The infinitesimal volume element is then

and the Laplacian is given by

Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates.

See also

[edit]

Bibliography

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Parabolic_coordinates&oldid=1227712665"

Category: 
Orthogonal coordinate systems
 



This page was last edited on 7 June 2024, at 11:44 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki