Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  



1.1  Coordinate surfaces  





1.2  Inverse transformation  





1.3  Scale factors  





1.4  Differential Operators  







2 Toroidal harmonics  



2.1  Standard separation  





2.2  An alternative separation  







3 References  





4 Bibliography  





5 External links  














Toroidal coordinates






Magyar
Português
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Illustration of toroidal coordinates, which are obtained by rotating a two-dimensional bipolar coordinate system about the axis separating its two foci. The foci are located at a distance 1 from the vertical z-axis. The portion of the red sphere that lies above the $xy$-plane is the σ = 30° isosurface, the blue torus is the τ = 0.5 isosurface, and the yellow half-plane is the φ = 60° isosurface. The green half-plane marks the x-z plane, from which φ is measured. The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.996, −1.725, 1.911).

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and inbipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

Definition[edit]

The most common definition of toroidal coordinates is

together with ). The coordinate of a point equals the angle and the coordinate equals the natural logarithm of the ratio of the distances and to opposite sides of the focal ring

The coordinate ranges are , and

Coordinate surfaces[edit]

Rotating this two-dimensional bipolar coordinate system about the vertical axis produces the three-dimensional toroidal coordinate system above. A circle on the vertical axis becomes the red sphere, whereas a circle on the horizontal axis becomes the blue torus.

Surfaces of constant correspond to spheres of different radii

that all pass through the focal ring but are not concentric. The surfaces of constant are non-intersecting tori of different radii

that surround the focal ring. The centers of the constant- spheres lie along the -axis, whereas the constant- tori are centered in the plane.

Inverse transformation[edit]

The coordinates may be calculated from the Cartesian coordinates (x, y, z) as follows. The azimuthal angle is given by the formula

The cylindrical radius of the point P is given by

and its distances to the foci in the plane defined by is given by

Geometric interpretation of the coordinates σ and τ of a point P. Observed in the plane of constant azimuthal angle , toroidal coordinates are equivalent to bipolar coordinates. The angle is formed by the two foci in this plane and P, whereas is the logarithm of the ratio of distances to the foci. The corresponding circles of constant and are shown in red and blue, respectively, and meet at right angles (magenta box); they are orthogonal.

The coordinate equals the natural logarithm of the focal distances

whereas equals the angle between the rays to the foci, which may be determined from the law of cosines

Or explicitly, including the sign,

where .

The transformations between cylindrical and toroidal coordinates can be expressed in complex notation as

Scale factors[edit]

The scale factors for the toroidal coordinates and are equal

whereas the azimuthal scale factor equals

Thus, the infinitesimal volume element equals

Differential Operators[edit]

The Laplacian is given by

For a vector field the Vector Laplacian is given by

Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates.

Toroidal harmonics[edit]

Standard separation[edit]

The 3-variable Laplace equation

admits solution via separation of variables in toroidal coordinates. Making the substitution

A separable equation is then obtained. A particular solution obtained by separation of variables is:

where each function is a linear combination of:

Where P and Q are associated Legendre functions of the first and second kind. These Legendre functions are often referred to as toroidal harmonics.

Toroidal harmonics have many interesting properties. If you make a variable substitution then, for instance, with vanishing order (the convention is to not write the order when it vanishes) and

and

where and are the complete elliptic integrals of the first and second kind respectively. The rest of the toroidal harmonics can be obtained, for instance, in terms of the complete elliptic integrals, by using recurrence relations for associated Legendre functions.

The classic applications of toroidal coordinates are in solving partial differential equations, e.g., Laplace's equation for which toroidal coordinates allow a separation of variables or the Helmholtz equation, for which toroidal coordinates do not allow a separation of variables. Typical examples would be the electric potential and electric field of a conducting torus, or in the degenerate case, an electric current-ring (Hulme 1982).

An alternative separation[edit]

Alternatively, a different substitution may be made (Andrews 2006)

where

Again, a separable equation is obtained. A particular solution obtained by separation of variables is then:

where each function is a linear combination of:

Note that although the toroidal harmonics are used again for the T  function, the argument is rather than and the and indices are exchanged. This method is useful for situations in which the boundary conditions are independent of the spherical angle , such as the charged ring, an infinite half plane, or two parallel planes. For identities relating the toroidal harmonics with argument hyperbolic cosine with those of argument hyperbolic cotangent, see the Whipple formulae.

References[edit]

Bibliography[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Toroidal_coordinates&oldid=1189153062"

Categories: 
Three-dimensional coordinate systems
Orthogonal coordinate systems
 



This page was last edited on 10 December 2023, at 01:48 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki