Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Types of sap  



1.1  Xylem sap  





1.2  Phloem sap  







2 Human uses  





3 See also  





4 References  





5 External links  














Sap






العربية
Aragonés
Български
Bosanski
Català
Deutsch
Eesti
Español
Esperanto
Euskara
فارسی
Français
Galego

ि
Ido
Bahasa Indonesia
Italiano
עברית
Kiswahili
Lingála
Magyar
Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча
Polski
Português
Română
Sakizaya
Simple English
Sunda
Suomi
Svenska
Tagalog
Türkçe
Walon

Žemaitėška

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Plant sap)

Sap droplets of Dracaena trifasciata

Sap is a fluid transported in xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant.

Sap is distinct from latex, resin, or cell sap; it is a separate substance, separately produced, and with different components and functions.

Insect honeydew is called sap, particularly when it falls from trees, but is only the remains of eaten sap and other plant parts.[1]

Types of sap[edit]

Saps may be broadly divided into two types: xylem sap and phloem sap.

Xylem sap[edit]

Xylem sap (pronounced /ˈzləm/) consists primarily of a watery solution of hormones, mineral elements and other nutrients. Transport of sap in xylem is characterized by movement from the roots toward the leaves.[2]

Over the past century, there has been some controversy regarding the mechanism of xylem sap transport; today, most plant scientists agree that the cohesion-tension theory best explains this process, but multiforce theories that hypothesize several alternative mechanisms have been suggested, including longitudinal cellular and xylem osmotic pressure gradients, axial potential gradients in the vessels, and gel- and gas-bubble-supported interfacial gradients.[3][4]

Xylem sap transport can be disrupted by cavitation—an "abrupt phase change [of water] from liquid to vapor"[5]—resulting in air-filled xylem conduits. In addition to being a fundamental physical limit on tree height, two environmental stresses can disrupt xylem transport by cavitation: increasingly negative xylem pressures associated with water stress, and freeze-thaw cycles in temperate climates.[5]

Phloem sap[edit]

Phloem sap (pronounced /ˈflɛm/) consists primarily of sugars, hormones, and mineral elements dissolved in water. It flows from where carbohydrates are produced or stored (sugar source) to where they are used (sugar sinks).[citation needed] The pressure flow hypothesis proposes a mechanism for phloem sap transport,[citation needed] although other hypotheses have been proposed.[6] Phloem sap is thought to play a role in sending informational signals throughout vascular plants. According to Annual Review of Plant Biology,

Loading and unloading patterns are largely determined by the conductivity and number of plasmodesmata and the position-dependent function of solute-specific, plasma membrane transport proteins. Recent evidence indicates that mobile proteins and RNA are part of the plant's long-distance communication signaling system. Evidence also exists for the directed transport and sorting of macromolecules as they pass through plasmodesmata.[6]

Leafhoppers feeding on sap, attended by ants

Many insects of the order Hemiptera (the half-wings), feed directly on phloem sap, and make it the primary component of their diet. Phloem sap is "nutrient-rich compared with many other plant products and generally lacking in toxins and feeding deterrents, [yet] it is consumed as the dominant or sole diet by a very restricted range of animals".[7] This apparent paradox is explained by the fact that phloem sap is physiologically extreme in terms of animal digestion, and it is hypothesized that few animals take direct advantage of this because they lack two adaptations that are necessary to enable direct use by animals. These include the existence of a very high ratio of non-essential/essential amino acids in phloem sap for which these adapted Hemiptera insects contain symbiotic microorganisms which can then provide them with essential amino acids; and also insect "tolerance of the very high sugar content and osmotic pressure of phloem sap is promoted by their possession in the gut of sucrase-transglucosidase activity, which transforms excess ingested sugar into long-chain oligosaccharides."[7] A much larger set of animals do however consume phloem sap by proxy, either "through feeding on the honeydew of phloem-feeding hemipterans. Honeydew is physiologically less extreme than phloem sap, with a higher essential/non-essential amino acid ratio and lower osmotic pressure,"[7] or by feeding on the biomass of insects that have grown on more direct ingestion of phloem sap.

Human uses[edit]

Maple syrup is made from reduced sugar maple xylem sap.[8] The sap often is harvested from the sugar maple, Acer saccharum.[9]

In some countries (e.g., Lithuania, Latvia, Estonia, Finland, Belarus, Russia) harvesting the early spring sap of birch trees (so called "birch juice") for human consumption is common practice; the sap can be used fresh or fermented and contains xylitol.[10]

Certain palm tree sap can be used to make palm syrup.[citation needed] In the Canary Islands they use the Canary Island date palm while in Chile they use the Chilean wine palm to make their syrup called miel de palma.[citation needed]

See also[edit]

References[edit]

  1. ^ "How to Remove Tree Sap From a Car". HowStuffWorks. 20 August 2019. Retrieved 23 December 2020.
  • ^ Marschner, H (1983). "General Introduction to the Mineral Nutrition of Plants". Inorganic Plant Nutrition. Encyclopedia of Plant Physiology. Vol. 15 A. Springer. pp. 5–60. doi:10.1007/978-3-642-68885-0_2. ISBN 978-3-642-68887-4.
  • ^ Zimmerman, Ulrich (2002). "What are the driving forces for water lifting in the xylem conduit?". Physiologia Plantarum. 114 (3): 327–335. doi:10.1034/j.1399-3054.2002.1140301.x. PMID 12060254.
  • ^ Tyree, Melvin T. (1997). "The cohesion-tension theory of sap ascent: current controversies". Journal of Experimental Botany. 48 (10): 1753–1765. doi:10.1093/jxb/48.10.1753.
  • ^ a b Sperry, John S.; Nichols, Kirk L.; Sullivan, June E; Eastlack, Sondra E. (1994). "Xylem Embolism in ring-porous, diffuse-porous, and coniferous trees of Northern Utah and Interior Alaska" (PDF). Ecology. 75 (6): 1736–1752. Bibcode:1994Ecol...75.1736S. doi:10.2307/1939633. JSTOR 1939633. Archived from the original (PDF) on 2017-08-10. Retrieved 2018-12-18.
  • ^ a b Turgeon, Robert; Wolf, Shmuel (2009). "Phloem Transport: Cellular Pathways and Molecular Trafficking". Annual Review of Plant Biology. 60 (1): 207–21. doi:10.1146/annurev.arplant.043008.092045. PMID 19025382.
  • ^ a b c Douglas, A.E. (2006). "Phloem-sap feeding by animals: problems and solutions". Journal of Experimental Botany. 57 (4): 747–754. doi:10.1093/jxb/erj067. PMID 16449374.
  • ^ Saupe, Stephen. "Plant Physiology". College of Saint Benedict and Saint John's University. Retrieved 3 April 2018.
  • ^ Morselli, Mariafranca; Whalen, M Lynn (1996). "Appendix 2: Maple Chemistry and Quality". In Koelling, Melvin R; Heiligmann, Randall B (eds.). North American Maple Syrup Producers Manual. Bulletin. Vol. 856. Ohio State University. Archived from the original on 29 April 2006. Retrieved 20 September 2010.
  • ^ Suzanne Wetzel; Luc Clement Duchesne; Michael F. Laporte (2006). Bioproducts from Canada's Forests: New Partnerships in the Bioeconomy. Springer. pp. 113–. ISBN 978-1-4020-4992-7. Archived from the original on 23 November 2017. Retrieved 6 April 2013.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sap&oldid=1224299709"

    Categories: 
    Plant physiology
    Trees
    Tree tapping
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from June 2020
    Articles with unsourced statements from January 2022
    Commons category link from Wikidata
     



    This page was last edited on 17 May 2024, at 14:40 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki