Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Groups of prime-power order  





2 The general algorithm  





3 Complexity  





4 Notes  





5 References  














PohligHellman algorithm






Deutsch
Français
עברית
Nederlands
Polski
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Pohlig Hellman Algorithm
Steps of the Pohlig–Hellman algorithm.

Ingroup theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm,[1] is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer.

The algorithm was introduced by Roland Silver, but first published by Stephen Pohlig and Martin Hellman, who credit Silver with its earlier independent but unpublished discovery. Pohlig and Hellman also list Richard Schroeppel and H. Block as having found the same algorithm, later than Silver, but again without publishing it.[2]

Groups of prime-power order[edit]

As an important special case, which is used as a subroutine in the general algorithm (see below), the Pohlig–Hellman algorithm applies to groups whose order is a prime power. The basic idea of this algorithm is to iteratively compute the -adic digits of the logarithm by repeatedly "shifting out" all but one unknown digit in the exponent, and computing that digit by elementary methods.

(Note that for readability, the algorithm is stated for cyclic groups — in general, must be replaced by the subgroup generated by , which is always cyclic.)

Input. A cyclic group of order with generator and an element .
Output. The unique integer such that .
  1. Initialize
  2. Compute . By Lagrange's theorem, this element has order .
  3. For all , do:
    1. Compute . By construction, the order of this element must divide , hence .
    2. Using the baby-step giant-step algorithm, compute such that . It takes time .
    3. Set .
  4. Return .

The algorithm computes discrete logarithms in time complexity , far better than the baby-step giant-step algorithm's when is large.

The general algorithm[edit]

In this section, we present the general case of the Pohlig–Hellman algorithm. The core ingredients are the algorithm from the previous section (to compute a logarithm modulo each prime power in the group order) and the Chinese remainder theorem (to combine these to a logarithm in the full group).

(Again, we assume the group to be cyclic, with the understanding that a non-cyclic group must be replaced by the subgroup generated by the logarithm's base element.)

Input. A cyclic group of order with generator , an element , and a prime factorization .
Output. The unique integer such that .
  1. For each , do:
    1. Compute . By Lagrange's theorem, this element has order .
    2. Compute . By construction, .
    3. Using the algorithm above in the group , compute such that .
  2. Solve the simultaneous congruence
    The Chinese remainder theorem guarantees there exists a unique solution .
  3. Return .

The correctness of this algorithm can be verified via the classification of finite abelian groups: Raising and to the power of can be understood as the projection to the factor group of order .

Complexity[edit]

The worst-case input for the Pohlig–Hellman algorithm is a group of prime order: In that case, it degrades to the baby-step giant-step algorithm, hence the worst-case time complexity is . However, it is much more efficient if the order is smooth: Specifically, if is the prime factorization of , then the algorithm's complexity is

group operations.[3]

Notes[edit]

  • ^ Menezes, et al. 1997, pg. 108
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pohlig–Hellman_algorithm&oldid=1227351509"

    Category: 
    Number theoretic algorithms
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 5 June 2024, at 06:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki