Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History on four-dimensional groups  





2 Isometries of 4D point symmetry  





3 Notation for groups  



3.1  Involution groups  





3.2  Rank 4 Coxeter groups  





3.3  Chiral subgroups  





3.4  Pentachoric symmetry  





3.5  Hexadecachoric symmetry  





3.6  Icositetrachoric symmetry  





3.7  Demitesseractic symmetry  





3.8  Hexacosichoric symmetry  





3.9  Duoprismatic symmetry  







4 Summary of some 4-dimensional point groups  





5 See also  





6 References  





7 External links  














Point groups in four dimensions







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A hierarchy of 4D polychoric point groups and some subgroups. Vertical positioning is grouped by order. Blue, green, and pink colors show reflectional, hybrid, and rotational groups.
Some 4D point groups in Conway's notation

Ingeometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere.

History on four-dimensional groups

[edit]

Isometries of 4D point symmetry

[edit]

There are four basic isometries of 4-dimensional point symmetry: reflection symmetry, rotational symmetry, rotoreflection, and double rotation.

Notation for groups

[edit]

Point groups in this article are given in Coxeter notation, which are based on Coxeter groups, with markups for extended groups and subgroups.[6] Coxeter notation has a direct correspondence the Coxeter diagram like [3,3,3], [4,3,3], [31,1,1], [3,4,3], [5,3,3], and [p,2,q]. These groups bound the 3-sphere into identical hyperspherical tetrahedral domains. The number of domains is the order of the group. The number of mirrors for an irreducible group is nh/2, where h is the Coxeter group's Coxeter number, n is the dimension (4).[7]

For cross-referencing, also given here are quaternion based notations by Patrick du Val (1964)[8] and John Conway (2003).[9] Conway's notation allows the order of the group to be computed as a product of elements with chiral polyhedral group orders: (T=12, O=24, I=60). In Conway's notation, a (±) prefix implies central inversion, and a suffix (.2) implies mirror symmetry. Similarly Du Val's notation has an asterisk (*) superscript for mirror symmetry.

Involution groups

[edit]

There are five involutional groups: no symmetry [ ]+, reflection symmetry [ ], 2-fold rotational symmetry [2]+, 2-fold rotoreflection [2+,2+], and central point symmetry [2+,2+,2+] as a 2-fold double rotation.

Rank 4 Coxeter groups

[edit]

Apolychoric group is one of five symmetry groups of the 4-dimensional regular polytopes. There are also three polyhedral prismatic groups, and an infinite set of duoprismatic groups. Each group defined by a Goursat tetrahedron fundamental domain bounded by mirror planes. The dihedral angles between the mirrors determine order of dihedral symmetry. The Coxeter–Dynkin diagram is a graph where nodes represent mirror planes, and edges are called branches, and labeled by their dihedral angle order between the mirrors.

The term polychoron (plural polychora, adjective polychoric), from the Greek roots poly ("many") and choros ("room" or "space") and was advocated[10]byNorman Johnson and George Olshevsky in the context of uniform polychora (4-polytopes), and their related 4-dimensional symmetry groups.[11]

Orthogonal subgroups

B4 can be decomposed into 2 orthogonal groups, 4A1 and D4:

  1. = (4 orthogonal mirrors)
  2. = (12 mirrors)

F4 can be decomposed into 2 orthogonal D4 groups:

  1. = (12 mirrors)
  2. = (12 mirrors)

B3×A1 can be decomposed into orthogonal groups, 4A1 and D3:

  1. = (3+1 orthogonal mirrors)
  2. = (6 mirrors)

Rank 4 Coxeter groups allow a set of 4 mirrors to span 4-space, and divides the 3-sphere into tetrahedral fundamental domains. Lower rank Coxeter groups can only bound hosohedronorhosotope fundamental domains on the 3-sphere.

Like the 3D polyhedral groups, the names of the 4D polychoric groups given are constructed by the Greek prefixes of the cell counts of the corresponding triangle-faced regular polytopes.[12] Extended symmetries exist in uniform polychora with symmetric ring-patterns within the Coxeter diagram construct. Chiral symmetries exist in alternated uniform polychora.

Only irreducible groups have Coxeter numbers, but duoprismatic groups [p,2,p] can be doubled to p,2,p by adding a 2-fold gyration to the fundamental domain, and this gives an effective Coxeter number of 2p, for example the [4,2,4] and its full symmetry B4, [4,3,3] group with Coxeter number 8.

Weyl
group
Conway
Quaternion
Abstract
structure
Coxeter
diagram
Coxeter
notation
Order Commutator
subgroup
Coxeter
number

(h)
Mirrors
(m)
Full polychoric groups
A4 +1/60[I×I].21 S5 [3,3,3] 120 [3,3,3]+ 5 10
D4 ±1/3[T×T].2 1/2.2S4 [31,1,1] 192 [31,1,1]+ 6 12
B4 ±1/6[O×O].2 2S4 = S2≀S4 [4,3,3] 384 8 4 12
F4 ±1/2[O×O].23 3.2S4 [3,4,3] 1152 [3+,4,3+] 12 12 12
H4 ±[I×I].2 2.(A5×A5).2 [5,3,3] 14400 [5,3,3]+ 30 60
Full polyhedral prismatic groups
A3A1 +1/24[O×O].23 S4×D1 [3,3,2] = [3,3]×[ ] 48 [3,3]+ - 6 1
B3A1 ±1/24[O×O].2 S4×D1 [4,3,2] = [4,3]×[ ] 96 - 3 6 1
H3A1 ±1/60[I×I].2 A5×D1 [5,3,2] = [5,3]×[ ] 240 [5,3]+ - 15 1
Full duoprismatic groups
4A1 = 2D2 ±1/2[D4×D4] D14 = D22 [2,2,2] = [ ]4 = [2]2 16 [ ]+ 4 1 1 1 1
D2B2 ±1/2[D4×D8] D2×D4 [2,2,4] = [2]×[4] 32 [2]+ - 1 1 2 2
D2A2 ±1/2[D4×D6] D2×D3 [2,2,3] = [2]×[3] 24 [3]+ - 1 1 3
D2G2 ±1/2[D4×D12] D2×D6 [2,2,6] = [2]×[6] 48 - 1 1 3 3
D2H2 ±1/2[D4×D10] D2×D5 [2,2,5] = [2]×[5] 40 [5]+ - 1 1 5
2B2 ±1/2[D8×D8] D42 [4,2,4] = [4]2 64 [2+,2,2+] 8 2 2 2 2
B2A2 ±1/2[D8×D6] D4×D3 [4,2,3] = [4]×[3] 48 [2+,2,3+] - 2 2 3
B2G2 ±1/2[D8×D12] D4×D6 [4,2,6] = [4]×[6] 96 - 2 2 3 3
B2H2 ±1/2[D8×D10] D4×D5 [4,2,5] = [4]×[5] 80 [2+,2,5+] - 2 2 5
2A2 ±1/2[D6×D6] D32 [3,2,3] = [3]2 36 [3+,2,3+] 6 3 3
A2G2 ±1/2[D6×D12] D3×D6 [3,2,6] = [3]×[6] 72 - 3 3 3
2G2 ±1/2[D12×D12] D62 [6,2,6] = [6]2 144 12 3 3 3 3
A2H2 ±1/2[D6×D10] D3×D5 [3,2,5] = [3]×[5] 60 [3+,2,5+] - 3 5
G2H2 ±1/2[D12×D10] D6×D5 [6,2,5] = [6]×[5] 120 - 3 3 5
2H2 ±1/2[D10×D10] D52 [5,2,5] = [5]2 100 [5+,2,5+] 10 5 5
In general, p,q=2,3,4...
2I2(2p) ±1/2[D4p×D4p] D2p2 [2p,2,2p] = [2p]2 16p2 [p+,2,p+] 2p p p p p
2I2(p) ±1/2[D2p×D2p] Dp2 [p,2,p] = [p]2 4p2 2p p p
I2(p)I2(q) ±1/2[D4p×D4q] D2p×D2q [2p,2,2q] = [2p]×[2q] 16pq [p+,2,q+] - p p q q
I2(p)I2(q) ±1/2[D2p×D2q] Dp×Dq [p,2,q] = [p]×[q] 4pq - p q

The symmetry order is equal to the number of cells of the regular polychoron times the symmetry of its cells. The omnitruncated dual polychora have cells that match the fundamental domains of the symmetry group.

Nets for convex regular 4-polytopes and omnitruncated duals
Symmetry A4 D4 B4 F4 H4
4-polytope 5-cell demitesseract tesseract 24-cell 120-cell
Cells 5 {3,3} 16 {3,3} 8 {4,3} 24 {3,4} 120 {5,3}
Cell symmetry [3,3], order 24 [4,3], order 48 [5,3], order 120
Coxeter diagram =
4-polytope
net
Omnitruncation omni. 5-cell omni. demitesseract omni. tesseract omni. 24-cell omni. 120-cell
Omnitruncation
dual
net
Coxeter diagram
Cells 5×24 = 120 (16/2)×24 = 192 8×48 = 384 24×48 = 1152 120×120 = 14400

Chiral subgroups

[edit]
The 16-cell edges projected onto a 3-sphere represent 6 great circles of B4 symmetry. 3 circles meet at each vertex. Each circle represents axes of 4-fold symmetry.
The 24-cell edges projected onto a 3-sphere represent the 16 great circles of F4 symmetry. Four circles meet at each vertex. Each circle represents axes of 3-fold symmetry.
The 600-cell edges projected onto a 3-sphere represent 72 great circles of H4 symmetry. Six circles meet at each vertex. Each circle represent axes of 5-fold symmetry.

Direct subgroups of the reflective 4-dimensional point groups are:

Coxeter
notation
Conway
Quaternion
Structure Order Gyration axes
Polychoric groups
[3,3,3]+ +1/60[I×I] A5 60 103 102
3,3,3+ ±1/60[I×I] A5×Z2 120 103 (10+?)2
[31,1,1]+ ±1/3[T×T] 1/2.2A4 96 163 182
[4,3,3]+ ±1/6[O×O] 2A4 = A2≀A4 192 64 163 362
[3,4,3]+ ±1/2[O×O] 3.2A4 576 184 163 163 722
[3+,4,3+] ±[T×T] 288 163 163 (72+18)2
[[3+,4,3+]] ±[O×T] 576 323 (72+18+?)2
3,4,3+ ±[O×O] 1152 184 323 (72+?)2
[5,3,3]+ ±[I×I] 2.(A5×A5) 7200 725 2003 4502
Polyhedral prismatic groups
[3,3,2]+ +1/24[O×O] A4×Z2 24 43 43 (6+6)2
[4,3,2]+ ±1/24[O×O] S4×Z2 48 64 83 (3+6+12)2
[5,3,2]+ ±1/60[I×I] A5×Z2 120 125 203 (15+30)2
Duoprismatic groups
[2,2,2]+ +1/2[D4×D4] 8 12 12 42
[3,2,3]+ +1/2[D6×D6] 18 13 13 92
[4,2,4]+ +1/2[D8×D8] 32 14 14 162
(p,q=2,3,4...), gcd(p,q)=1
[p,2,p]+ +1/2[D2p×D2p] 2p2 1p 1p (pp)2
[p,2,q]+ +1/2[D2p×D2q] 2pq 1p 1q (pq)2
[p+,2,q+] +[Cp×Cq] Zp×Zq pq 1p 1q

Pentachoric symmetry

[edit]

Hexadecachoric symmetry

[edit]

Icositetrachoric symmetry

[edit]

Demitesseractic symmetry

[edit]

Hexacosichoric symmetry

[edit]

[5,3,3]+ 72 order-5 gyrations

[5,3,3]+ 200 order-3 gyrations

[5,3,3]+ 450 order-2 gyrations

[5,3,3]+ all gyrations

[5,3], , icosahedral pyramidal group is isomorphic to 3d icosahedral symmetry

Duoprismatic symmetry

[edit]

Summary of some 4-dimensional point groups

[edit]

This is a summary of 4-dimensional point groupsinCoxeter notation. 227 of them are crystallographic point groups (for particular values of p and q).[14][which?] (nc) is given for non-crystallographic groups. Some crystallographic group[which?] have their orders indexed (order.index) by their abstract group structure.[15]

Finite groups
[ ]:
Symbol Order
[1]+ 1.1
[1] = [ ] 2.1
[2]:
Symbol Order
[1+,2]+ 1.1
[2]+ 2.1
[2] 4.1
[2,2]:
Symbol Order
[2+,2+]+
= [(2+,2+,2+)]
1.1
[2+,2+] 2.1
[2,2]+ 4.1
[2+,2] 4.1
[2,2] 8.1
[2,2,2]:
Symbol Order
[(2+,2+,2+,2+)]
= [2+,2+,2+]+
1.1
[2+,2+,2+] 2.1
[2+,2,2+] 4.1
[(2,2)+,2+] 4
[[2+,2+,2+]] 4
[2,2,2]+ 8
[2+,2,2] 8.1
[(2,2)+,2] 8
[[2+,2,2+]] 8.1
[2,2,2] 16.1
[[2,2,2]]+ 16
[[2,2+,2]] 16
[[2,2,2]] 32
[p]:
Symbol Order
[p]+ p
[p] 2p
[p,2]:
Symbol Order
[p,2]+ 2p
[p,2] 4p
[2p,2+]:
Symbol Order
[2p,2+] 4p
[2p+,2+] 2p
[p,2,2]:
Symbol Order
[p+,2,2+] 2p
[(p,2)+,2+] 2p
[p,2,2]+ 4p
[p,2,2+] 4p
[p+,2,2] 4p
[(p,2)+,2] 4p
[p,2,2] 8p
[2p,2+,2]:
Symbol Order
[2p+,2+,2+]+ p
[2p+,2+,2+] 2p
[2p+,2+,2] 4p
[2p+,(2,2)+] 4p
[2p,(2,2)+] 8p
[2p,2+,2] 8p
[p,2,q]:
Symbol Order
[p+,2,q+] pq
[p,2,q]+ 2pq
[p+,2,q] 2pq
[p,2,q] 4pq
[(p,2)+,2q]:
Symbol Order
[(p,2)+,2q+] 2pq
[(p,2)+,2q] 4pq
[2p,2,2q]:
Symbol Order
[2p+,2+,2q+]+=
[(2p+,2+,2q+,2+)]
pq
[2p+,2+,2q+] 2pq
[2p,2+,2q+] 4pq
[((2p,2)+,(2q,2)+)] 4pq
[2p,2+,2q] 8pq
[[p,2,p]]:
Symbol Order
[[p+,2,p+]] 2p2
[[p,2,p]]+ 4p2
[[p,2,p]+] 4p2
[[p,2,p]] 8p2
[[2p,2,2p]]:
Symbol Order
[[(2p+,2+,2p+,2+)]] 2p2
[[2p+,2+,2p+]] 4p2
[[((2p,2)+,(2p,2)+)]] 8p2
[[2p,2+,2p]] 16p2
[3,3,2]:
Symbol Order
[(3,3)Δ,2,1+]
≅ [2,2]+
4
[(3,3)Δ,2]
≅ [2,(2,2)+]
8
[(3,3),2,1+]
≅ [4,2+]
8
[(3,3)+,2,1+]
= [3,3]+
12.5
[(3,3),2]
≅ [2,4,2+]
16
[3,3,2,1+]
= [3,3]
24
[(3,3)+,2] 24.10
[3,3,2]+ 24.10
[3,3,2] 48.36
[4,3,2]:
Symbol Order
[1+,4,3+,2,1+]
= [3,3]+
12
[3+,4,2+] 24
[(3,4)+,2+] 24
[1+,4,3+,2]
= [(3,3)+,2]
24.10
[3+,4,2,1+]
= [3+,4]
24.10
[(4,3)+,2,1+]
= [4,3]+
24.15
[1+,4,3,2,1+]
= [3,3]
24
[1+,4,(3,2)+]
= [3,3,2]+
24
[3,4,2+] 48
[4,3+,2] 48.22
[4,(3,2)+] 48
[(4,3)+,2] 48.36
[1+,4,3,2]
= [3,3,2]
48.36
[4,3,2,1+]
= [4,3]
48.36
[4,3,2]+ 48.36
[4,3,2] 96.5
[5,3,2]:
Symbol Order
[(5,3)+,2,1+]
= [5,3]+
60.13
[5,3,2,1+]
= [5,3]
120.2
[(5,3)+,2] 120.2
[5,3,2]+ 120.2
[5,3,2] 240 (nc)
[31,1,1]:
Symbol Order
[31,1,1]Δ
≅[[4,2+,4]]+
32
[31,1,1] 64
[31,1,1]+ 96.1
[31,1,1] 192.2
<[3,31,1]>
= [4,3,3]
384.1
[3[31,1,1]]
= [3,4,3]
1152.1
[3,3,3]:
Symbol Order
[3,3,3]+ 60.13
[3,3,3] 120.1
[[3,3,3]]+ 120.2
[[3,3,3]+] 120.1
[[3,3,3]] 240.1
[4,3,3]:
Symbol Order
[1+,4,(3,3)Δ]
= [31,1,1]Δ
≅[[4,2+,4]]+
32
[4,(3,3)Δ]
= [2+,4[2,2,2]+]
≅[[4,2+,4]]
64
[1+,4,(3,3)]
= [31,1,1]
64
[1+,4,(3,3)+]
= [31,1,1]+
96.1
[4,(3,3)]
≅ [[4,2,4]]
128
[1+,4,3,3]
= [31,1,1]
192.2
[4,(3,3)+] 192.1
[4,3,3]+ 192.3
[4,3,3] 384.1
[3,4,3]:
Symbol Order
[3+,4,3+] 288.1
[3,4,3]
= [4,3,3]
384.1
[3,4,3]+ 576.2
[3+,4,3] 576.1
[[3+,4,3+]] 576 (nc)
[3,4,3] 1152.1
[[3,4,3]]+ 1152 (nc)
[[3,4,3]+] 1152 (nc)
[[3,4,3]] 2304 (nc)
[5,3,3]:
Symbol Order
[5,3,3]+ 7200 (nc)
[5,3,3] 14400 (nc)

See also

[edit]

References

[edit]
  1. ^ Hurley, A. C.; Dirac, P. A. M. (1951). "Finite rotation groups and crystal classes in four dimensions". Mathematical Proceedings of the Cambridge Philosophical Society. 47 (4): 650–661. Bibcode:1951PCPS...47..650H. doi:10.1017/S0305004100027109. S2CID 122468489.
  • ^ http://met.iisc.ernet.in/~lord/webfiles/Alan/CV25.pdf [bare URL PDF]
  • ^ Mozrzymas, Jan; Solecki, Andrzej (1975). "R4 point groups". Reports on Mathematical Physics. 7 (3): 363–394. Bibcode:1975RpMP....7..363M. doi:10.1016/0034-4877(75)90040-3.
  • ^ http://journals.iucr.org/a/issues/2002/03/00/au0290/au0290.pdf [bare URL PDF]
  • ^ Warner, N. P. (1982). "The Symmetry Groups of the Regular Tessellations of S2 and S3". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 383 (1785): 379–398. Bibcode:1982RSPSA.383..379W. doi:10.1098/rspa.1982.0136. JSTOR 2397289. S2CID 119786906.
  • ^ Coxeter, Regular and Semi-Regular Polytopes II,1985, 2.2 Four-dimensional reflection groups, 2.3 Subgroups of small index
  • ^ Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
  • ^ Patrick Du Val, Homographies, quaternions and rotations, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  • ^ Conway and Smith, On Quaternions and Octonions, 2003 Chapter 4, section 4.4 Coxeter's Notations for the Polyhedral Groups
  • ^ "Convex and abstract polytopes", Programme and abstracts, MIT, 2005
  • ^ Johnson (2015), Chapter 11, Section 11.5 Spherical Coxeter groups
  • ^ What Are Polyhedra?, with Greek Numerical Prefixes
  • ^ a b Coxeter, The abstract groups Gm;n;p, (1939)
  • ^ Weigel, D.; Phan, T.; Veysseyre, R. (1987). "Crystallography, geometry and physics in higher dimensions. III. Geometrical symbols for the 227 crystallographic point groups in four-dimensional space". Acta Crystallogr. A43 (3): 294. Bibcode:1987AcCrA..43..294W. doi:10.1107/S0108767387099367.
  • ^ Coxeter, Regular and Semi-Regular Polytopes II (1985)
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Point_groups_in_four_dimensions&oldid=1233147101"

    Category: 
    4-polytopes
    Hidden categories: 
    All articles with bare URLs for citations
    Articles with bare URLs for citations from March 2022
    Articles with PDF format bare URLs for citations
    Articles needing cleanup from January 2021
    All pages needing cleanup
    Cleanup tagged articles with a reason field from January 2021
    Wikipedia pages needing cleanup from January 2021
    All articles with specifically marked weasel-worded phrases
    Articles with specifically marked weasel-worded phrases from January 2021
     



    This page was last edited on 7 July 2024, at 14:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki