Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical description  



1.1  Roll-off factor  



1.1.1  β = 0  





1.1.2  β = 1  







1.2  Bandwidth  





1.3  Auto-correlation function  







2 Application  





3 References  





4 External links  














Raised-cosine filter






Català
Deutsch
Español
فارسی
Italiano
עברית
Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The raised-cosine filter is a filter frequently used for pulse-shaping in digital modulation due to its ability to minimise intersymbol interference (ISI). Its name stems from the fact that the non-zero portion of the frequency spectrum of its simplest form () is a cosine function, 'raised' up to sit above the (horizontal) axis.

Mathematical description

[edit]
Frequency response of raised-cosine filter with various roll-off factors
Impulse response of raised-cosine filter with various roll-off factors

The raised-cosine filter is an implementation of a low-pass Nyquist filter, i.e., one that has the property of vestigial symmetry. This means that its spectrum exhibits odd symmetry about , where is the symbol-period of the communications system.

Its frequency-domain description is a piecewise-defined function, given by:

or in terms of havercosines:

for

and characterised by two values; , the roll-off factor, and , the reciprocal of the symbol-rate.

The impulse response of such a filter[1] is given by:

in terms of the normalised sinc function. Here, this is the "communications sinc" rather than the mathematical one.

Roll-off factor

[edit]

The roll-off factor, , is a measure of the excess bandwidth of the filter, i.e. the bandwidth occupied beyond the Nyquist bandwidth of . Some authors use .[2]

If we denote the excess bandwidth as , then:

where is the symbol-rate.

The graph shows the amplitude response as is varied between 0 and 1, and the corresponding effect on the impulse response. As can be seen, the time-domain ripple level increases as decreases. This shows that the excess bandwidth of the filter can be reduced, but only at the expense of an elongated impulse response.

β = 0

[edit]

As approaches 0, the roll-off zone becomes infinitesimally narrow, hence:

where is the rectangular function, so the impulse response approaches . Hence, it converges to an ideal or brick-wall filter in this case.

β = 1

[edit]

When , the non-zero portion of the spectrum is a pure raised cosine, leading to the simplification:

or

Bandwidth

[edit]

The bandwidth of a raised cosine filter is most commonly defined as the width of the non-zero frequency-positive portion of its spectrum, i.e.:

As measured using a spectrum analyzer, the radio bandwidth B in Hz of the modulated signal is twice the baseband bandwidth BW (as explained in [1]), i.e.:

Auto-correlation function

[edit]

The auto-correlation function of raised cosine function is as follows:

The auto-correlation result can be used to analyze various sampling offset results when analyzed with auto-correlation.

Application

[edit]
Consecutive raised-cosine impulses, demonstrating zero-ISI property

When used to filter a symbol stream, a Nyquist filter has the property of eliminating ISI, as its impulse response is zero at all (where is an integer), except .

Therefore, if the transmitted waveform is correctly sampled at the receiver, the original symbol values can be recovered completely.

However, in many practical communications systems, a matched filter is used in the receiver, due to the effects of white noise. For zero ISI, it is the net response of the transmit and receive filters that must equal :

And therefore:

These filters are called root-raised-cosine filters.

Raised cosine is a commonly used apodization filter for fiber Bragg gratings.

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Raised-cosine_filter&oldid=1189773695"

Categories: 
Linear filters
Telecommunication theory
Hidden categories: 
Articles with short description
Short description is different from Wikidata
 



This page was last edited on 13 December 2023, at 22:48 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki