Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure  



1.1  Genomic structure  







2 Multiplication  



2.1  Recombination  







3 Transmission  





4 Provirus  





5 Early evolution  





6 Gene therapy  





7 Cancer  





8 Classification  



8.1  Exogenous  



8.1.1  Group VI viruses  





8.1.2  Group VII viruses  







8.2  Endogenous  







9 Controversy  





10 Treatment  





11 Treatment of veterinary retroviruses  





12 References  





13 Further reading  





14 External links  














Retrovirus






Afrikaans
العربية
Беларуская
Български
Bosanski
Català
Čeština
Dansk
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français
Gaeilge
Galego

Հայերեն
ि
Ido
Bahasa Indonesia
Italiano
עברית

Қазақша
Latina
Latviešu
Luganda
Lombard
Magyar
Македонски
مصرى
Bahasa Melayu
Монгол
Nederlands

Nordfriisk
Norsk bokmål
Norsk nynorsk
Occitan
Oʻzbekcha / ўзбекча
Polski
Português
Română
Русский
Scots
Simple English
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Türkçe
Українська
اردو
Tiếng Vit
Winaray


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
Wikispecies
Wikiquote
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Retroviridae)

Retroviridae

HIV retrovirus schematic of cell infection, virus production and virus structure

Virus classification Edit this classification

(unranked):

Virus

Realm:

Riboviria

Kingdom:

Pararnavirae

Phylum:

Artverviricota

Class:

Revtraviricetes

Order:

Ortervirales

Family:

Retroviridae

Subfamilies and genera[1]

  • Betaretrovirus
  • Deltaretrovirus
  • Epsilonretrovirus
  • Gammaretrovirus
  • Lentivirus
  • Spumaretrovirinae
  • Aretrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell.[2] After invading a host cell's cytoplasm, the virus uses its own reverse transcriptase enzyme to produce DNA from its RNA genome, the reverse of the usual pattern, thus retro (backwards). The new DNA is then incorporated into the host cell genome by an integrase enzyme, at which point the retroviral DNA is referred to as a provirus. The host cell then treats the viral DNA as part of its own genome, transcribing and translating the viral genes along with the cell's own genes, producing the proteins required to assemble new copies of the virus. Many retroviruses cause serious diseases in humans, other mammals, and birds.[3]

    Retroviruses have many subfamilies in three basic groups.

    The specialized DNA-infiltration enzymes in retroviruses make them valuable research tools in molecular biology, and they have been used successfully in gene delivery systems.[6]

    Evidence from endogenous retroviruses (inherited provirus DNA in animal genomes) suggests that retroviruses have been infecting vertebrates for at least 450 million years.[7]

    Structure[edit]

    Virions, viruses in the form of independent particles of retroviruses, consist of enveloped particles about 100 nm in diameter. The outer lipid envelope consists of glycoprotein.[8] The virions also contain two identical single-stranded RNA molecules 7–10 kilobases in length. The two molecules are present as a dimer, formed by base pairing between complementary sequences. Interaction sites between the two RNA molecules have been identified as a "kissing stem-loop".[3] Although virions of different retroviruses do not have the same morphology or biology, all the virion components are very similar.[9]

    The main virion components are:

    The genomic and subgenomic organization of a prototypical retrovirus. Abbreviations are explained in the file description.[18]

    Genomic structure[edit]

    The retroviral genome is packaged as viral particles. These viral particles are dimers of single-stranded, positive-sense, linear RNA molecules.[10]

    Retroviruses (and orterviruses in general) follow a layout of 5'–gagpropolenv–3' in the RNA genome. gag and pol encode polyproteins, each managing the capsid and replication. The pol region encodes enzymes necessary for viral replication, such as reverse transcriptase, protease and integrase.[19] Depending on the virus, the genes may overlap or fuse into larger polyprotein chains. Some viruses contain additional genes. The lentivirus genus, the spumavirus genus, the HTLV / bovine leukemia virus (BLV) genus, and a newly introduced fish virus genus are retroviruses classified as complex. These viruses have genes called accessory genes, in addition to gag, pro, pol and env genes. Accessory genes are located between pol and env, downstream from the env, including the U3 region of LTR, or in the env and overlapping portions. While accessory genes have auxiliary roles, they also coordinate and regulate viral gene expression. In addition, some retroviruses may carry genes called oncogenes or onc genes from another class. Retroviruses with these genes (also called transforming viruses) are known for their ability to quickly cause tumors in animals and transform cells in culture into an oncogenic state.[20]

    The polyproteins are cleaved into smaller proteins each with their own function. The nucleotides encoding them are known as subgenes.[18]

    Multiplication[edit]

    A retrovirus has a membrane containing glycoproteins, which are able to bind to a receptor protein on a host cell. There are two strands of RNA within the cell that have three enzymes: protease, reverse transcriptase, and integrase (1). The first step of replication is the binding of the glycoprotein to the receptor protein (2). Once these have been bound, the cell membrane degrades, becoming part of the host cell, and the RNA strands and enzymes enter the cell (3). Within the cell, reverse transcriptase creates a complementary strand of DNA from the retrovirus RNA and the RNA is degraded; this strand of DNA is known as cDNA (4). The cDNA is then replicated, and the two strands form a weak bond and enter the nucleus (5). Once in the nucleus, the DNA is integrated into the host cell's DNA with the help of integrase (6). This cell can either stay dormant, or RNA may be synthesized from the DNA and used to create the proteins for a new retrovirus (7). Ribosome units are used to translate the mRNA of the virus into the amino acid sequences which can be made into proteins in the rough endoplasmic reticulum. This step will also make viral enzymes and capsid proteins (8). Viral RNA will be made in the nucleus. These pieces are then gathered together and are pinched off of the cell membrane as a new retrovirus (9).

    When retroviruses have integrated their own genome into the germ line, their genome is passed on to a following generation. These endogenous retroviruses (ERVs), contrasted with exogenous ones, now make up 5–8% of the human genome.[21] Most insertions have no known function and are often referred to as "junk DNA". However, many endogenous retroviruses play important roles in host biology, such as control of gene transcription, cell fusion during placental development in the course of the germination of an embryo, and resistance to exogenous retroviral infection. Endogenous retroviruses have also received special attention in the research of immunology-related pathologies, such as autoimmune diseases like multiple sclerosis, although endogenous retroviruses have not yet been proven to play any causal role in this class of disease.[22]

    While transcription was classically thought to occur only from DNA to RNA, reverse transcriptase transcribes RNA into DNA. The term "retro" in retrovirus refers to this reversal (making DNA from RNA) of the usual direction of transcription. It still obeys the central dogma of molecular biology, which states that information can be transferred from nucleic acid to nucleic acid but cannot be transferred back from protein to either protein or nucleic acid. Reverse transcriptase activity outside of retroviruses has been found in almost all eukaryotes, enabling the generation and insertion of new copies of retrotransposons into the host genome. These inserts are transcribed by enzymes of the host into new RNA molecules that enter the cytosol. Next, some of these RNA molecules are translated into viral proteins. The proteins encoded by the gag and pol genes are translated from genome-length mRNAs into Gag and Gag–Pol polyproteins. In example, for the gag gene; it is translated into molecules of the capsid protein, and for the pol gene; it is translated into molecules of reverse transcriptase. Retroviruses need a lot more of the Gag proteins than the Pol proteins and have developed advanced systems to synthesize the required amount of each. As an example, after Gag synthesis nearly 95 percent of the ribosomes terminate translation, while other ribosomes continue translation to synthesize Gag–Pol. In the rough endoplasmic reticulum glycosylation begins and the env gene is translated from spliced mRNAs in the rough endoplasmic reticulum, into molecules of the envelope protein. When the envelope protein molecules are carried to the Golgi complex, they are divided into surface glycoprotein and transmembrane glycoprotein by a host protease. These two glycoprotein products stay in close affiliation, and they are transported to the plasma membrane after further glycosylation.[3]

    It is important to note that a retrovirus must "bring" its own reverse transcriptase in its capsid, otherwise it is unable to utilize the enzymes of the infected cell to carry out the task, due to the unusual nature of producing DNA from RNA.[citation needed]

    Industrial drugs that are designed as protease and reverse-transcriptase inhibitors are made such that they target specific sites and sequences within their respective enzymes. However these drugs can quickly become ineffective due to the fact that the gene sequences that code for the protease and the reverse transcriptase quickly mutate. These changes in bases cause specific codons and sites with the enzymes to change and thereby avoid drug targeting by losing the sites that the drug actually targets.[citation needed]

    Because reverse transcription lacks the usual proofreading of DNA replication, a retrovirus mutates very often. This enables the virus to grow resistant to antiviral pharmaceuticals quickly, and impedes the development of effective vaccines and inhibitors for the retrovirus.[23]

    One difficulty faced with some retroviruses, such as the Moloney retrovirus, involves the requirement for cells to be actively dividing for transduction. As a result, cells such as neurons are very resistant to infection and transduction by retroviruses. This gives rise to a concern that insertional mutagenesis due to integration into the host genome might lead to cancer or leukemia. This is unlike Lentivirus, a genus of Retroviridae, which are able to integrate their RNA into the genome of non-dividing host cells.[citation needed]

    Recombination[edit]

    Two RNA genomes are packaged into each retrovirus particle, but, after an infection, each virus generates only one provirus.[24] After infection, reverse transcription occurs and this process is accompanied by recombination. Recombination involves template strand switching between the two genome copies (copy choice recombination) during reverse transcription. From 5 to 14 recombination events per genome occur at each replication cycle.[25] Genetic recombination appears to be necessary for maintaining genome integrity and as a repair mechanism for salvaging damaged genomes.[24]

    Transmission[edit]

    Provirus[edit]

    The DNA formed after reverse transcription (the provirus) is longer than the RNA genome because each of the terminals have the U3 - R - U5 sequences called long terminal repeat (LTR). Thus, 5' terminal has the extra U3 sequence, while the other terminal has the U5 sequence.[15] LTRs are able to send signals for vital tasks to be carried out such as initiation of RNA production or management of the rate of transcription. This way, LTRs can control replication, hence, the entire progress of the viral cycle.[27] Although located in the nucleus, the non-integrated retroviral cDNA is a very weak substrate for transcription. For this reason, an integrated provirus is a necessary for permanent and an effective expression of retroviral genes.[10]

    This DNA can be incorporated into host genome as a provirus that can be passed on to progeny cells. The retrovirus DNA is inserted at random into the host genome. Because of this, it can be inserted into oncogenes. In this way some retroviruses can convert normal cells into cancer cells. Some provirus remains latent in the cell for a long period of time before it is activated by the change in cell environment.[citation needed]

    Early evolution[edit]

    Studies of retroviruses led to the first demonstrated synthesis of DNA from RNA templates, a fundamental mode for transferring genetic material that occurs in both eukaryotes and prokaryotes. It has been speculated that the RNA to DNA transcription processes used by retroviruses may have first caused DNA to be used as genetic material. In this model, the RNA world hypothesis, cellular organisms adopted the more chemically stable DNA when retroviruses evolved to create DNA from the RNA templates.[citation needed]

    An estimate of the date of evolution of the foamy-like endogenous retroviruses placed the time of the most recent common ancestor at > 450 million years ago.[28]

    Gene therapy[edit]

    Gammaretroviral and lentiviral vectors for gene therapy have been developed that mediate stable genetic modification of treated cells by chromosomal integration of the transferred vector genomes. This technology is of use, not only for research purposes, but also for clinical gene therapy aiming at the long-term correction of genetic defects, e.g., in stem and progenitor cells. Retroviral vector particles with tropism for various target cells have been designed. Gammaretroviral and lentiviral vectors have so far been used in more than 300 clinical trials, addressing treatment options for various diseases.[6][29] Retroviral mutations can be developed to make transgenic mouse models to study various cancers and their metastatic models.[citation needed]

    Cancer[edit]

    Retroviruses that cause tumor growth include Rous sarcoma virus and mouse mammary tumor virus. Cancer can be triggered by proto-oncogenes that were mistakenly incorporated into proviral DNA or by the disruption of cellular proto-oncogenes. Rous sarcoma virus contains the src gene that triggers tumor formation. Later it was found that a similar gene in cells is involved in cell signaling, which was most likely excised with the proviral DNA. Nontransforming viruses can randomly insert their DNA into proto-oncogenes, disrupting the expression of proteins that regulate the cell cycle. The promoter of the provirus DNA can also cause over expression of regulatory genes. Retroviruses can cause diseases such as cancer and immunodeficiency. If viral DNA is integrated into host chromosomes, it can lead to permanent infections. It is therefore important to discover the body's response to retroviruses. Exogenous retroviruses are especially associated with pathogenic diseases. For example, mice have mouse mammary tumor virus (MMTV), which is a retrovirus. This virus passes to newborn mice through mammary milk. When they are 6 months old, the mice carrying the virus get mammary cancer because of the retrovirus. In addition, leukemia virus I (HTLV-1), found in human T cell, has been found in humans for many years. It is estimated that this retrovirus causes leukemia in the ages of 40 and 50.[30] It has a replicable structure that can induce cancer. In addition to the usual gene sequence of retroviruses, HTLV-1 contains a fourth region, PX. This region encodes Tax, Rex, p12, p13 and p30 regulatory proteins. The Tax protein initiates the leukemic process and organizes the transcription of all viral genes in the integrated HTLV proviral DNA. [31]

    Classification[edit]

    Phylogeny of Retroviridae

    Exogenous[edit]

    This section may require cleanup to meet Wikipedia's quality standards. The specific problem is: Not the "Retroviridae" taxon the article talks about; suggest move into Baltimore classification#Reverse transcribing virusesorRevtraviricetes. Please help improve this section if you can. (February 2021) (Learn how and when to remove this message)

    Exogenous retroviruses are infectious RNA- or DNA-containing viruses that are transmitted from one organism to another. In the Baltimore classification system, which groups viruses together based on their manner of messenger RNA synthesis, they are classified into two groups: Group VI: single-stranded RNA viruses with a DNA intermediate in their life cycle, and Group VII: double-stranded DNA viruses with an RNA intermediate in their life cycle.[citation needed]

    Group VI viruses[edit]

    All members of Group VI use virally encoded reverse transcriptase, an RNA-dependent DNA polymerase, to produce DNA from the initial virion RNA genome. This DNA is often integrated into the host genome, as in the case of retroviruses and pseudoviruses, where it is replicated and transcribed by the host.

    Group VI includes:

    The family Retroviridae was previously divided into three subfamilies (Oncovirinae, Lentivirinae, and Spumavirinae), but are now divided into two: Orthoretrovirinae and Spumaretrovirinae. The term oncovirus is now commonly used to describe a cancer-causing virus. This family now includes the following genera:

    Note that according to ICTV 2017, genus Spumavirus has been divided into five genera, and its former type species Simian foamy virus is now upgraded to genus Simiispumavirus with not less than 14 species, including new type species Eastern chimpanzee simian foamy virus.[32]

    Group VII viruses[edit]

    Both families in Group VII have DNA genomes contained within the invading virus particles. The DNA genome is transcribed into both mRNA, for use as a transcript in protein synthesis, and pre-genomic RNA, for use as the template during genome replication. Virally encoded reverse transcriptase uses the pre-genomic RNA as a template for the creation of genomic DNA.

    Group VII includes:

    The latter family is closely related to the newly proposed

    whilst families Belpaoviridae, Metaviridae, Pseudoviridae, Retroviridae, and Caulimoviridae constitute the order Ortervirales.[34]

    Endogenous[edit]

    Endogenous retroviruses are not formally included in this classification system, and are broadly classified into three classes, on the basis of relatedness to exogenous genera:

    Controversy[edit]

    Retroviruses have been the focus of several recent claims and assertions which have been largely discredited by the science community. An initial study in 2009 seemed to make new findings which might change some of the established knowledge on this topic. However, although later research disproved some of the claims made about retroviruses, there are several controversial figures who continue to make claims which overall are considered to not have any valid basis or consensus in support of these claims.[35][36][37]

    Treatment[edit]

    Antiretroviral drugs are medications for the treatment of infection by retroviruses, primarily HIV. Different classes of antiretroviral drugs act on different stages of the HIV life cycle. Combination of several (typically three or four) antiretroviral drugs is known as highly active antiretroviral therapy (HAART).[38]

    Treatment of veterinary retroviruses[edit]

    Feline leukemia virus and Feline immunodeficiency virus infections are treated with biologics, including the only immunomodulator currently licensed for sale in the United States, Lymphocyte T-Cell Immune Modulator (LTCI).[39]

    References[edit]

    1. ^ "Virus Taxonomy: 2018b Release". International Committee on Taxonomy of Viruses (ICTV). March 2019. Retrieved 16 March 2019.
  • ^ "retrovirus". Oxford English Dictionary. Archived from the original on 26 September 2018. Retrieved 25 September 2018.
  • ^ a b c Carter JB, Saunders VA (2007). Virology: principles and applications (1st ed.). Chichester, England: John Wiley & Sons. p. 191. ISBN 978-0-470-02386-0. OCLC 124160564.
  • ^ Coffin JM, Hughes SH, Varmus HE, eds. (1997). Retroviruses. Cold Spring Harbor Laboratory. ISBN 978-0-87969-571-2.
  • ^ {Miller, A. D. (2006). Retroviral Vectors in Gene Therapy. Encyclopedia of Life Sciences. doi:10.1038/npg.els.0005741}
  • ^ a b Kurth R, Bannert N, eds. (2010). Retroviruses: Molecular Biology, Genomics and Pathogenesis. Horizon Scientific. ISBN 978-1-904455-55-4.
  • ^ Zheng, Jialu; Wei, Yutong; Han, Guan-Zhu (1 February 2022). "The diversity and evolution of retroviruses: Perspectives from viral "fossils"". Virologica Sinica. 37 (1): 11–18. doi:10.1016/j.virs.2022.01.019. ISSN 1995-820X. PMC 8922424. PMID 35234634.
  • ^ Coffin, John M.; Hughes, Stephen H.; Varmus, Harold E. (1997). The Place of Retroviruses in Biology. Cold Spring Harbor Laboratory Press.
  • ^ Coffin JM (1992). "Structure and Classification of Retroviruses". In Levy JA (ed.). The Retroviridae. Vol. 1 (1st ed.). New York: Plenum. p. 20. ISBN 978-0-306-44074-8.
  • ^ a b c Painter, Mark M.; Collins, Kathleen L. (1 January 2019), "HIV and Retroviruses", in Schmidt, Thomas M. (ed.), Encyclopedia of Microbiology (Fourth Edition), Academic Press, pp. 613–628, doi:10.1016/b978-0-12-801238-3.66202-5, ISBN 978-0-12-811737-8, S2CID 188750910, retrieved 3 May 2020
  • ^ Olson ED, Musier-Forsyth K (February 2019). "Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly". Seminars in Cell & Developmental Biology. SI: Human dendritic cells. 86: 129–139. doi:10.1016/j.semcdb.2018.03.015. PMC 6167211. PMID 29580971.
  • ^ Coffin JM, Hughes SH, Varmus HE (1997). Virion Proteins. Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-571-2.
  • ^ Coffin 1992, pp. 26–34
  • ^ Kim FJ, Battini JL, Manel N, Sitbon M (January 2004). "Emergence of vertebrate retroviruses and envelope capture". Virology. 318 (1): 183–91. doi:10.1016/j.virol.2003.09.026. PMID 14972546.
  • ^ a b Carter JB, Saunders VA (2007). Virology : principles and applications. Chichester, England: John Wiley & Sons. ISBN 978-0-470-02386-0. OCLC 124160564.
  • ^ Champoux JJ, Schultz SJ (June 2009). "RNase H Activity: Structure, Specificity, and Function in Reverse Transcription". The FEBS Journal. 134 (1–2): 86–103. doi:10.1016/j.virusres.2007.12.007. PMC 2464458. PMID 18261820.
  • ^ Moelling K, Broecker F, Kerrigan JE (2014). "RNase H: specificity, mechanisms of action, and antiviral target". Human Retroviruses. Methods in Molecular Biology. Vol. 1087. pp. 71–84. doi:10.1007/978-1-62703-670-2_7. ISBN 978-1-62703-669-6. PMID 24158815.
  • ^ a b Vargiu L, Rodriguez-Tomé P, Sperber GO, Cadeddu M, Grandi N, Blikstad V, et al. (January 2016). "Classification and characterization of human endogenous retroviruses; mosaic forms are common". Retrovirology. 13: 7. doi:10.1186/s12977-015-0232-y. PMC 4724089. PMID 26800882.
  • ^ Peters, P. J., Marston, B. J., Weidle, P. J., & Brooks, J. T. (2013). Human Immunodeficiency Virus Infection. Hunter's Tropical Medicine and Emerging Infectious Disease, 217–247. doi:10.1016/b978-1-4160-4390-4.00027-8
  • ^ Coffin JM, Hughes SH, Varmus HE (1997). "Genetic Organization". Retroviruses. Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-571-2.
  • ^ Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (April 2004). "Long-term reinfection of the human genome by endogenous retroviruses". Proceedings of the National Academy of Sciences of the United States of America. 101 (14): 4894–9. Bibcode:2004PNAS..101.4894B. doi:10.1073/pnas.0307800101. PMC 387345. PMID 15044706.
  • ^ Medstrand P, van de Lagemaat LN, Dunn CA, Landry JR, Svenback D, Mager DL (2005). "Impact of transposable elements on the evolution of mammalian gene regulation". Cytogenetic and Genome Research. 110 (1–4): 342–52. doi:10.1159/000084966. PMID 16093686. S2CID 25307890.
  • ^ Svarovskaia ES, Cheslock SR, Zhang WH, Hu WS, Pathak VK (January 2003). "Retroviral mutation rates and reverse transcriptase fidelity". Frontiers in Bioscience. 8 (1–3): d117–34. doi:10.2741/957. PMID 12456349.
  • ^ a b Rawson JM, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS (November 2018). "Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity". Nucleic Acids Research. 46 (20): 10535–10545. doi:10.1093/nar/gky910. PMC 6237782. PMID 30307534.
  • ^ Cromer D, Grimm AJ, Schlub TE, Mak J, Davenport MP (January 2016). "Estimating the in-vivo HIV template switching and recombination rate". AIDS. 30 (2): 185–92. doi:10.1097/QAD.0000000000000936. PMID 26691546. S2CID 20086739.
  • ^ Jolly C (March 2011). "Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors". Virology. 411 (2): 251–9. doi:10.1016/j.virol.2010.12.031. PMC 3053447. PMID 21247613.
  • ^ MacLachlan, N. James; Dubovi, Edward J. (2011). Fenner's Veterinary Virology (Fourth ed.). Academic Press. p. 250. ISBN 978-0-12-375159-1. Retrieved 6 May 2020.
  • ^ Aiewsakun P, Katzourakis A (January 2017). "Marine origin of retroviruses in the early Palaeozoic Era". Nature Communications. 8: 13954. Bibcode:2017NatCo...813954A. doi:10.1038/ncomms13954. PMC 5512871. PMID 28071651.
  • ^ Desport M, ed. (2010). Lentiviruses and Macrophages: Molecular and Cellular Interactions. Caister Academic. ISBN 978-1-904455-60-8.
  • ^ Ross, S. R. (2018). Cellular Immune Responses to Retroviruses. In Retrovirus-Cell Interactions (pp. 401–420). Elsevier. https://doi.org/10.1016/B978-0-12-811185-7.00011-X
  • ^ Burrell, C. J., Howard, C. R., & Murphy, F. A. (2017). Retroviruses. In Fenner and White's Medical Virology (pp. 317–344). Elsevier. https://doi.org/10.1016/b978-0-12-375156-0.00023-0
  • ^ ICTV Taxonomy Browser
  • ^ Lauber C, Seitz S, Mattei S, Suh A, Beck J, Herstein J, et al. (September 2017). "Deciphering the Origin and Evolution of Hepatitis B Viruses by Means of a Family of Non-enveloped Fish Viruses". Cell Host & Microbe. 22 (3): 387–399.e6. doi:10.1016/j.chom.2017.07.019. PMC 5604429. PMID 28867387. and PDF
  • ^ Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, et al. (June 2018). "Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses". Journal of Virology. 92 (12). doi:10.1128/JVI.00515-18. PMC 5974489. PMID 29618642.
  • ^ Fact-checking Judy Mikovits, the controversial virologist attacking Anthony Fauci in a viral conspiracy video, By Martin Enserink, Jon Cohen, May 8, 2020, accessed June 17, 2022, science.org website.
  • ^ Neil, Stuart J.D.; Campbell, Edward M. (2020). "Fake Science: XMRV, COVID-19, and the Toxic Legacy of Dr. Judy Mikovits". AIDS Research and Human Retroviruses. 36 (7): 545–549. doi:10.1089/aid.2020.0095. PMC 7398426. PMID 32414291.
  • ^ Virus Conspiracists Elevate a New Champion, by Davey Alba, May 9, 2020, nytimes.com
  • ^ Rutherford GW, Sangani PR, Kennedy GE (2003). "Three- or four- versus two-drug antiretroviral maintenance regimens for HIV infection". The Cochrane Database of Systematic Reviews (4): CD002037. doi:10.1002/14651858.CD002037. PMID 14583945.
  • ^ Gingerich DA (2008). "Lymphocyte T-cell immunomodulator (LTCI): Review of the immunopharmacology of a new biologic" (PDF). International Journal of Applied Research in Veterinary Medicine. 6 (2): 61–68. ISSN 1559-470X.
  • Further reading[edit]

  • Specter M (3 December 2007). "Annals of Science: Darwin's Surprise". The New Yorker.
  • Dostálková, A; Vokatá, B; Kaufman, F; Ulbrich, P; Ruml, T; Rumlová, M (2021). "Effect of Small Polyanions on In Vitro Assembly of Selected Members of Alpha-, Beta- and Gammaretroviruses". Viruses. 13 (1): 129. doi:10.3390/v13010129. PMC 7831069. PMID 33477490.
  • External links[edit]

  • Introduction
  • Social history of viruses
  • Virology
  • Components

  • Viral envelope
  • Viral protein
  • Viral life cycle

  • Viral replication
  • Viral shedding
  • Viroplasm
  • Virus latency
  • Lytic cycle
  • Lysogenic cycle
  • Genetics

  • Antigenic shift
  • Phenotype mixing
  • Reassortment
  • Viral evolution
  • By host

  • Bacteriophage
  • Virophage
  • Human virome
  • Mycovirus
  • Plant virus
  • Other

  • Giant virus
  • Helper virus
  • Viral vector
  • Laboratory diagnosis of viral infections
  • Marine viruses
  • Neurotropic virus
  • Oncovirus
  • Satellites
  • Viral disease
  • Viral load
  • Virus-like particle
  • Virus classification
  • Virus quantification
  • Virome
  • Virosphere
  • Category
  • Commons
  • WikiProject
  • Blubervirales

    Hepadnaviridae

    Herpetohepadnavirus

    Metahepadnavirus

    Orthohepadnavirus

  • Hepatitis B virus
  • Woodchuck hepatitis virus
  • Woolly monkey hepatitis B virus
  • Parahepadnavirus

    Ortervirales

    (ssRNA-RT viruses)

    Metaviridae

    Errantivirus

    Metavirus

    Pseudoviridae

    Hemivirus

    Pseudovirus

    Sirevirus

    Retroviridae

    Orthoretrovirinae

    Betaretrovirus

  • Jaagsiekte sheep retrovirus
  • Deltaretrovirus

  • HTLV-2, 3, 4)
  • Simian-T-lymphotropic virus (types 1-4)
  • Bovine leukemia virus
  • Epsilonretrovirus

    Gammaretrovirus

  • Abelson murine leukemia virus
  • Friend virus
  • Feline leukemia virus
  • Koala retrovirus (KoRV)
  • Xenotropic murine leukemia virus-related virus
  • Lentivirus

    • HIV (human immunodeficiency viruses)
  • Simian immunodeficiency viruses (SIV)
  • Feline immunodeficiency virus (FIV)
  • Puma lentivirus (PLV)
  • Equine infectious anemia virus (EIAV)
  • Bovine immunodeficiency virus (BIV)
  • Caprine arthritis encephalitis virus
  • Visna-maedi virus
  • Spumaretrovirinae

    Bovispumavirus

    Equispumavirus

    Felispumavirus

    Prosimiispumavirus

    Simiispumavirus

  • Human foamy virus
  • (dsDNA-RT viruses)

    Caulimoviridae

  • Kalanchoe top-spotting virus
  • Rubus yellow net virus
  • Caulimovirus

  • Cauliflower mosaic virus
  • Strawberry vein banding virus
  • Cavemovirus

    Dioscovirus

    Petuvirus

    Rosadnavirus

    Ruflodivirus

    Solendovirus

    Soymovirus

    Tungrovirus

    Vaccinivirus

    Endogenous

  • ERVWE1
  • HCP5
  • Human teratocarcinoma-derived virus
  • Human Endogenous Retrovirus-W
  • DNA

    Duplodnaviria

    Heunggongvirae

    Uroviricota

    Caudoviricetes

  • Chaseviridae
  • Demerecviridae
  • Drexlerviridae
  • Guelinviridae
  • Herelleviridae
  • Myoviridae
  • Podoviridae
  • Rountreeviridae
  • Salasmaviridae
  • Schitoviridae
  • Siphoviridae
  • Zobellviridae
  • Monodnaviria

    Shotokuvirae

    Zurhausenvirales

    Varidnaviria

    Bamfordvirae

    Chitovirales

    Megaviricetes

    Algavirales

    Imitervirales

    Pimascovirales

  • Iridoviridae
  • Marseilleviridae
  • Preplasmiviricota

    Maveriviricetes

    Polintoviricetes

    Orthopolintovirales

    Tectiliviricetes

    Belfryvirales

    Kalamavirales

    Rowavirales

    Vinavirales

    Helvetiavirae

    Dividoviricota

    Unassigned

    Naldaviricetes

  • Nudiviridae
  • Unassigned

    Unassigned

  • Bicaudaviridae
  • Clavaviridae
  • Fuselloviridae
  • Globuloviridae
  • Guttaviridae
  • Halspiviridae
  • Ovaliviridae
  • Plasmaviridae
  • Polydnaviridae
  • Portogloboviridae
  • Thaspiviridae
  • Genera: Dinodnavirus
  • Rhizidiovirus
  • Sangervirae

    Phixviricota

    Shotokuvirae

    Cossaviricota

    Quintoviricetes

    Piccovirales

    Cressdnaviricota

    Arfiviricetes

    Cirlivirales

    Cremevirales

    Mulpavirales

  • Nanoviridae
  • Recrevirales

    Repensiviricetes

    Geplafuvirales

  • Genomoviridae
  • Trapavirae

    Saleviricota

    Unassigned

  • Finnlakeviridae
  • Spiraviridae
  • RNA

    Resentoviricetes

    Reovirales

    Vidaverviricetes

    Mindivirales

    Pisuviricota

    Duplopiviricetes

  • Hypoviridae
  • Picobirnaviridae
  • Partitiviridae
  • Unassigned

  • Polymycoviridae
  • Genera: Botybirnavirus
  • Martellivirales

  • Closteroviridae
  • Endornaviridae
  • Kitaviridae
  • Mayoviridae
  • Togaviridae
  • Virgaviridae
  • Tymovirales

  • Betaflexiviridae
  • Deltaflexiviridae
  • Gammaflexiviridae
  • Tymoviridae
  • Flasuviricetes

    Amarillovirales

    Magsaviricetes

    Nodamuvirales

  • Sinhaliviridae
  • Tolucaviricetes

    Tolivirales

  • Luteoviridae
  • Tombusviridae
  • Lenarviricota

    Leviviricetes

  • Fiersviridae
  • Solspiviridae
  • Timlovirales

  • Steitzviridae
  • Amabiliviricetes

    Wolframvirales

    Howeltoviricetes

    Cryppavirales

    Miaviricetes

    Ourlivirales

    Pisuviricota

    Pisoniviricetes

  • Cremegaviridae
  • Coronaviridae
  • Euroniviridae
  • Gresnaviridae
  • Medioniviridae
  • Mesoniviridae
  • Mononiviridae
  • Nanghoshaviridae
  • Nanhypoviridae
  • Olifoviridae
  • Roniviridae
  • Tobaniviridae
  • Picornavirales

  • Marnaviridae
  • Solinviviridae
  • Caliciviridae
  • Iflaviridae
  • Secoviridae
  • Dicistroviridae
  • Polycipiviridae
  • Sobelivirales

  • Barnaviridae
  • Solemoviridae
  • Stelpaviricetes

    Patatavirales

    Stellavirales

    Unassigned

  • Sarthroviridae
  • Ellioviricetes

    Bunyavirales

  • Arenaviridae
  • Fimoviridae
  • Hantaviridae
  • Leishbuviridae
  • Mypoviridae
  • Nairoviridae
  • Peribunyaviridae
  • Phasmaviridae
  • Phenuiviridae
  • Tospoviridae
  • Wupedeviridae
  • Insthoviricetes

    Articulavirales

  • Orthomyxoviridae
  • Milneviricetes

    Serpentovirales

    Monjiviricetes

    Jingchuvirales

  • Chuviridae
  • Crepuscuviridae
  • Myriaviridae
  • Natareviridae
  • Mononegavirales

  • Bornaviridae
  • Filoviridae
  • Lispiviridae
  • Mymonaviridae
  • Nyamiviridae
  • Paramyxoviridae
  • Pneumoviridae
  • Rhabdoviridae
  • Sunviridae
  • Xinmoviridae
  • Yunchangviricetes

    Goujianvirales

    RT

    Self-replicating organic structures

    Cellular life

  • Archaea
  • Eukaryota
  • Incertae sedis
  • Virus

  • ssDNA virus
  • dsRNA virus
  • (+)ssRNA virus
  • (−)ssRNA virus
  • ssRNA-RT virus
  • dsDNA-RT virus
  • Subviral
    agents

    Viroid

  • Avsunviroidae
  • Helper-virus
    dependent

    Satellite

    • ssRNA satellite virus
  • dsDNA satellite virus (Virophage)
  • ssDNA satellite virus
  • ssDNA satellite
  • dsRNA satellite
  • ssRNA satellite (Virusoid)
  • Satellite-like nucleic acids
    • RNA
    • DNA
  • Other

  • DNA
  • Prion

  • Fungal prion
  • Nucleic acid
    self-replication

    Mobile genetic
    elements

  • Genomic island
  • Transposable element
  • Plasmid
  • Cosmid
  • Phagemid
  • Group I intron
  • Group II intron
  • Retrozyme
  • Other aspects

  • Chromosome
  • Genome
  • Origin of replication
  • Endogenous viral element
  • Repeated sequences in DNA
  • Endosymbiosis

  • Hydrogenosome
  • Plastid
  • Kappa organism
  • Organs
  • Nitroplast
  • Abiogenesis

  • Earliest known life forms
  • ?RNA life
  • Protocell
  • Coacervate
  • Proteinoid
  • Sulphobe
  • Research
  • See also

  • Cell
  • Non-cellular life
  • Synthetic virus
  • ?Nanobacterium
  • ?Nanobe
  • Cancer cell
  • Virome
  • Retroviridae

  • Wikispecies: Retroviridae
  • CoL: FM2
  • EoL: 8053
  • GBIF: 1940
  • IRMNG: 113829
  • NCBI: 11632
  • WoRMS: 600050
  • United States
  • Czech Republic

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Retrovirus&oldid=1229120879"

    Categories: 
    Retroviridae
    Modification of genetic information
    Molecular biology
    Ortervirales
    Virotherapy
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Use dmy dates from April 2017
    Articles with 'species' microformats
    All articles with unsourced statements
    Articles with unsourced statements from November 2022
    Articles needing cleanup from February 2021
    All pages needing cleanup
    Cleanup tagged articles with a reason field from February 2021
    Wikipedia pages needing cleanup from February 2021
    Articles with unsourced statements from May 2021
    Commons category link is on Wikidata
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NKC identifiers
     



    This page was last edited on 15 June 2024, at 00:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki