Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 History  





3 Advantages and disadvantages  





4 References  














Rhombic antenna






Deutsch
Français
Қазақша

Polski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Small rhombic UHF television antenna from 1952. Its broad bandwidth allowed it to cover the 470 to 890 MHz UHF television band.

Arhombic antenna is made of four sections of wire suspended parallel to the ground in a diamond or "rhombus" shape. Each of the four sides is the same length – about a quarter-wavelength to one wavelength per section – converging but not touching at an angle of about 42° at the fed end and at the far end. The length is not critical, typically from one to two wavelengths (λ), but there is an optimum angle for any given length and frequency. A horizontal rhombic antenna radiates horizontally polarized radio waves at a low elevation angle off the pointy ends of the antenna.

If the sections are joined by a resistor at either of the acute (pointy) ends, then the antenna will receive from and transmit to only the direction the end with the resistor points at. Its principal advantages over other types of antenna are its simplicity, high forward gain, wide bandwidth, and the ability to operate over a wide range of frequencies.

Description

[edit]
Diagram of radiation patterns (grey) of each segment of the antenna illustrates how it works. By using the correct vertex angle, one of the main lobes of each of the four sides point in the same direction, reinforcing each other, increasing the gain.

Arhombic antenna consists of one to several parallel wires suspended above the ground in a "rhombus" (diamond) shape. Long versions are typically supported by a pole or tower at each vertex to which the wires are attached by insulators. Each of the four sides is the same length. The length is not critical, typically from one to two wavelengths (λ) end-to-end, but for any given length and frequency, there is an optimum acute angle at which the sections should meet.

A horizontal rhombic antenna radiates horizontally polarized radio waves at a low elevation angle off the acute end of the antenna opposite the feedline. Its principal advantages over other types of antenna are its simplicity, high forward gain and wide bandwidth, the ability to operate over a wide range of frequencies.

It is typically fed at one of the two acute (sharper angle) vertices through a balanced transmission line, or alternatively a coaxial cable with a balun transformer. The end of the wires meeting at the opposite vertex is either left open (unconnected), or is terminated with a non-inductive resistor. When resistor-terminated, the radiation pattern is unidirectional, with the main lobe off the terminated end, so this end of the antenna is oriented toward the intended receiving station or region. When unterminated, the rhombic is bidirectional with two opposite lobes off the two acute ends, but is not perfectly bi-directional.

A horizontal three-wire rhombic antenna. This example is terminated with a resonant stub transmission line power reflector instead of a resistor to increase efficiency.

The rhombic antenna can radiate at elevation angles close to the horizon or at higher angles, depending on its height above ground relative to the operating frequency and its physical construction. Likewise, its beamwidth can be narrow or broad, depending primarily on its length. The shallow radiation angle makes it useful for skywave propagation, the longest distance mode for shortwave, in which radio waves directed into the sky at the horizon reflect from layers in the ionosphere and return to Earth far beyond the horizon.

It is possible to improve the low efficiency and gain of unidirectional rhombics by replacing the termination resistor by a low-loss balanced resonant stub transmission line. This reflects the power that would have been wasted in the termination resistor back into the antenna with the correct phase to reinforce the excitation from the transmitter. This circuit can increase the radiation efficiency of transmitting antennas to the 70-80% range, at the cost of increased complexity.

History

[edit]
AT&T 2 wire rhombic in Dixon, California, in 1937, used for telephone service to Shanghai, China

The rhombic antenna was designed in 1931 by Edmond Bruce[1] and Harald Friis,[2][3] It was mostly commonly used in the high frequency (HF) or shortwave band as a broadband directional antenna.

As of 2023, one last remnant pole still stands from the AT&T pole farm which was located in Mercer County, New Jersey

Prior to World War II, the rhombic was one of the most popular point-to-point high frequency antenna arrays. After World War II the rhombic largely fell out of favor for shortwave broadcast and point-to-point communications work, being replaced by log periodic antennas and curtain arrays. Larger log periodics provide wider frequency coverage with comparable gain to rhombics. Distributed feed curtains or HRS curtain arrays provided a cleaner pattern, ability to steer the pattern in elevation and azimuth, much higher efficiency, and significantly higher gain in less space. However, rhombic antennas are used in cases where the combination of high forward gain (despite the losses described above) and large operating bandwidth cannot be achieved by other means, or where a directional antenna is needed, but construction and installation costs must be kept low.

In addition to its use as a simple and effective transmitting antenna (as described above), the rhombic can also be used as an HF receiving antenna with good gain and directivity. For example, BBC Monitoring's Crowsley Park receiving station has three rhombic antennas aligned for reception at azimuths of 37, 57 and 77 degrees.

Advantages and disadvantages

[edit]

The rhombics' low cost, simplicity, reliability, and ease of construction sometimes outweighs performance advantages offered by other more complex arrays.[4][5][6]

Advantages

Disadvantages

References

[edit]
  1. ^ US 2285565, Bruce, Edmond, "Directive antenna", issued June 9, 1942 
  • ^ US 2041600A, Friis, Harald T., "Radio system", issued May 19, 1936 
  • ^ "Harald T. Friis". IEEE GHN.org. 4 December 2019.
  • ^ E.C. Jordan; K.G. Balmain. Electromagnetic Waves and Radiating Systems. Prentice-Hall EE Series (2nd ed.). McGraw-Hill.
  • ^ Kraus, J. Antennas. McGraw-Hill EE series. McGraw-Hill. pp. 408–412.[full citation needed]
  • ^ Laport, E.A (1952). Radio Antenna Engineering. McGraw-Hill. pp. 315–334.
  • ^ Kuecken, J. Antennas and Transmission Lines.[full citation needed]

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Rhombic_antenna&oldid=1182475127"

    Categories: 
    Radio frequency antenna types
    Antennas (radio)
    Hidden categories: 
    All articles with incomplete citations
    Articles with incomplete citations from September 2019
    Articles with short description
    Short description matches Wikidata
    Articles needing additional references from October 2015
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from January 2018
    Commons category link is on Wikidata
     



    This page was last edited on 29 October 2023, at 15:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki