Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Proof  





3 SchwarzPick theorem  





4 Proof of SchwarzPick theorem  





5 Further generalizations and related results  





6 See also  





7 References  














Schwarz lemma






Deutsch
Français

Italiano
עברית
Nederlands

Polski
Русский
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Schwarz lemma, named after Hermann Amandus Schwarz, is a result in complex analysis about holomorphic functions from the open unit disk to itself. The lemma is less celebrated than deeper theorems, such as the Riemann mapping theorem, which it helps to prove. It is, however, one of the simplest results capturing the rigidity of holomorphic functions.

Statement[edit]

Let be the open unit disk in the complex plane centered at the origin, and let be a holomorphic map such that and on.

Then for all , and .

Moreover, if for some non-zero or, then for some with .[1]

Proof[edit]

The proof is a straightforward application of the maximum modulus principle on the function

which is holomorphic on the whole of , including at the origin (because is differentiable at the origin and fixes zero). Now if denotes the closed disk of radius centered at the origin, then the maximum modulus principle implies that, for , given any , there exists on the boundary of such that

As we get .

Moreover, suppose that for some non-zero , or . Then, at some point of . So by the maximum modulus principle, is equal to a constant such that . Therefore, , as desired.

Schwarz–Pick theorem[edit]

A variant of the Schwarz lemma, known as the Schwarz–Pick theorem (after Georg Pick), characterizes the analytic automorphisms of the unit disc, i.e. bijective holomorphic mappings of the unit disc to itself:

Let be holomorphic. Then, for all ,

and, for all ,

The expression

is the distance of the points , in the Poincaré metric, i.e. the metric in the Poincaré disc model for hyperbolic geometry in dimension two. The Schwarz–Pick theorem then essentially states that a holomorphic map of the unit disk into itself decreases the distance of points in the Poincaré metric. If equality holds throughout in one of the two inequalities above (which is equivalent to saying that the holomorphic map preserves the distance in the Poincaré metric), then must be an analytic automorphism of the unit disc, given by a Möbius transformation mapping the unit disc to itself.

An analogous statement on the upper half-plane can be made as follows:

Let be holomorphic. Then, for all ,

This is an easy consequence of the Schwarz–Pick theorem mentioned above: One just needs to remember that the Cayley transform maps the upper half-plane conformally onto the unit disc . Then, the map is a holomorphic map from onto . Using the Schwarz–Pick theorem on this map, and finally simplifying the results by using the formula for , we get the desired result. Also, for all ,

If equality holds for either the one or the other expressions, then must be a Möbius transformation with real coefficients. That is, if equality holds, then

with and .

Proof of Schwarz–Pick theorem[edit]

The proof of the Schwarz–Pick theorem follows from Schwarz's lemma and the fact that a Möbius transformation of the form

maps the unit circle to itself. Fix and define the Möbius transformations

Since and the Möbius transformation is invertible, the composition maps to and the unit disk is mapped into itself. Thus we can apply Schwarz's lemma, which is to say

Now calling (which will still be in the unit disk) yields the desired conclusion

To prove the second part of the theorem, we rearrange the left-hand side into the difference quotient and let tend to .

Further generalizations and related results[edit]

The Schwarz–Ahlfors–Pick theorem provides an analogous theorem for hyperbolic manifolds.

De Branges' theorem, formerly known as the Bieberbach Conjecture, is an important extension of the lemma, giving restrictions on the higher derivatives of at in case isinjective; that is, univalent.

The Koebe 1/4 theorem provides a related estimate in the case that is univalent.

See also[edit]

References[edit]

  1. ^ Theorem 5.34 in Rodriguez, Jane P. Gilman, Irwin Kra, Rubi E. (2007). Complex analysis : in the spirit of Lipman Bers ([Online] ed.). New York: Springer. p. 95. ISBN 978-0-387-74714-9.{{cite book}}: CS1 maint: multiple names: authors list (link)

This article incorporates material from Schwarz lemma on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


Retrieved from "https://en.wikipedia.org/w/index.php?title=Schwarz_lemma&oldid=1219328317"

Categories: 
Riemann surfaces
Lemmas in analysis
Theorems in complex analysis
Hidden categories: 
CS1 maint: multiple names: authors list
Articles with short description
Short description is different from Wikidata
Wikipedia articles incorporating text from PlanetMath
Articles containing proofs
 



This page was last edited on 17 April 2024, at 02:43 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki