Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Arithmetic  



1.1  Sedenion properties  



1.1.1  Anti-associative  







1.2  Quaternionic subalgebras  





1.3  Zero divisors  







2 Applications  





3 See also  





4 Notes  





5 References  














Sedenion






العربية
Bosanski
Чӑвашла
Deutsch
Español
فارسی
Français

Interlingua
Italiano
Magyar
Nederlands

Polski
Português
Română
Русский
Slovenščina
Svenska
Українська



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Sedenions
Symbol
Typenonassociative algebra
Unitse0, ..., e15
Multiplicative identitye0
Main propertiespower associativity
distributivity
Common systems
  •  Integers
  •  Rational numbers
  •  Real numbers
  •  Complex numbers
  •  Quaternions
  • Less common systems

    Octonions () Sedenions ()

    Inabstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers, usually represented by the capital letter S, boldface Sorblackboard bold . They are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ionsortrigintaduonions.[1] It is possible to continue applying the Cayley–Dickson construction arbitrarily many times.

    The term sedenion is also used for other 16-dimensional algebraic structures, such as a tensor product of two copies of the biquaternions, or the algebra of 4 × 4 matrices over the real numbers, or that studied by Smith (1995).

    Arithmetic[edit]

    A visualization of a 4D extension to the cubic octonion,[2] showing the 35 triads as hyperplanes through the real vertex of the sedenion example given.

    Like octonions, multiplication of sedenions is neither commutative nor associative. But in contrast to the octonions, the sedenions do not even have the property of being alternative. They do, however, have the property of power associativity, which can be stated as that, for any element xof, the power is well defined. They are also flexible.

    Every sedenion is a linear combination of the unit sedenions , , , , ..., , which form a basis of the vector space of sedenions. Every sedenion can be represented in the form

    Addition and subtraction are defined by the addition and subtraction of corresponding coefficients and multiplication is distributive over addition.

    Like other algebras based on the Cayley–Dickson construction, the sedenions contain the algebra they were constructed from. So, they contain the octonions (generated by to in the table below), and therefore also the quaternions (generated by to), complex numbers (generated by and ) and real numbers (generated by ).

    The sedenions have a multiplicative identity element and multiplicative inverses, but they are not a division algebra because they have zero divisors. This means that two nonzero sedenions can be multiplied to obtain zero: an example is . All hypercomplex number systems after sedenions that are based on the Cayley–Dickson construction also contain zero divisors.

    A sedenion multiplication table is shown below:

    Sedenion properties[edit]

    From the above table, we can see that:

    and

    Anti-associative[edit]

    The sedenions are not fully anti-associative. Choose any four generators, and . The following 5-cycle shows that these five relations cannot all be anti-associative.

    In particular, in the table above, using and the last expression associates.

    Quaternionic subalgebras[edit]

    The 35 triads that make up this specific sedenion multiplication table with the 7 triads of the octonions used in creating the sedenion through the Cayley–Dickson construction shown in bold:

    The binary representations of the indices of these triples bitwise XOR to 0.

    { {1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {1, 8, 9}, {1, 11, 10}, {1, 13, 12}, {1, 14, 15},
    {2, 4, 6}, {2, 5, 7}, {2, 8, 10}, {2, 9, 11}, {2, 14, 12}, {2, 15, 13}, {3, 4, 7},
    {3, 6, 5}, {3, 8, 11}, {3, 10, 9}, {3, 13, 14}, {3, 15, 12}, {4, 8, 12}, {4, 9, 13},
    {4, 10, 14}, {4, 11, 15}, {5, 8, 13}, {5, 10, 15}, {5, 12, 9}, {5, 14, 11}, {6, 8, 14},
    {6, 11, 13}, {6, 12, 10}, {6, 15, 9}, {7, 8, 15}, {7, 9, 14}, {7, 12, 11}, {7, 13, 10} }

    Zero divisors[edit]

    The list of 84 sets of zero divisors , where :

    Applications[edit]

    Moreno (1998) showed that the space of pairs of norm-one sedenions that multiply to zero is homeomorphic to the compact form of the exceptional Lie group G2. (Note that in his paper, a "zero divisor" means a pair of elements that multiply to zero.)

    Guillard & Gresnigt (2019) demonstrated that the three generations of leptons and quarks that are associated with unbroken gauge symmetry can be represented using the algebra of the complexified sedenions . Their reasoning follows that a primitive idempotent projector — where is chosen as an imaginary unit akin to for in the Fano plane — that acts on the standard basis of the sedenions uniquely divides the algebra into three sets of split basis elements for , whose adjoint left actions on themselves generate three copies of the Clifford algebra which in-turn contain minimal left ideals that describe a single generation of fermions with unbroken gauge symmetry. In particular, they note that tensor products between normed division algebras generate zero divisors akin to those inside , where for the lack of alternativity and associativity does not affect the construction of minimal left ideals since their underlying split basis requires only two basis elements to be multiplied together, in-which associativity or alternativity are uninvolved. Still, these ideals constructed from an adjoint algebra of left actions of the algebra on itself remain associative, alternative, and isomorphic to a Clifford algebra. Altogether, this permits three copies of to exist inside . Furthermore, these three complexified octonion subalgebras are not independent; they share a common subalgebra, which the authors note could form a theoretical basis for CKM and PMNS matrices that, respectively, describe quark mixing and neutrino oscillations.

    Sedenion neural networks provide [further explanation needed] a means of efficient and compact expression in machine learning applications and have been used in solving multiple time-series and traffic forecasting problems.[3][4]

    See also[edit]

    Notes[edit]

  • ^ Saoud, Lyes Saad; Al-Marzouqi, Hasan (2020). "Metacognitive Sedenion-Valued Neural Network and its Learning Algorithm". IEEE Access. 8: 144823–144838. doi:10.1109/ACCESS.2020.3014690. ISSN 2169-3536.
  • ^ Kopp, Michael; Kreil, David; Neun, Moritz; Jonietz, David; Martin, Henry; Herruzo, Pedro; Gruca, Aleksandra; Soleymani, Ali; Wu, Fanyou; Liu, Yang; Xu, Jingwei (2021-08-07). "Traffic4cast at NeurIPS 2020 – yet more on the unreasonable effectiveness of gridded geo-spatial processes". NeurIPS 2020 Competition and Demonstration Track. PMLR: 325–343.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sedenion&oldid=1229160466"

    Categories: 
    Hypercomplex numbers
    Non-associative algebras
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles needing clarification from August 2022
     



    This page was last edited on 15 June 2024, at 06:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki