Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Modern definition  





2 Split-biquaternion group  





3 Module  





4 Direct sum of two quaternion rings  





5 Hamilton biquaternion  





6 Synonyms  





7 See also  





8 References  














Split-biquaternion






Deutsch
Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a split-biquaternion is a hypercomplex number of the form

where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring. This algebra was introduced by William Kingdon Clifford in an 1873 article for the London Mathematical Society. It has been repeatedly noted in mathematical literature since then, variously as a deviation in terminology, an illustration of the tensor product of algebras, and as an illustration of the direct sum of algebras. The split-biquaternions have been identified in various ways by algebraists; see § Synonyms below.

Modern definition[edit]

A split-biquaternion is ring isomorphic to the Clifford algebraCl0,3(R). This is the geometric algebra generated by three orthogonal imaginary unit basis directions, {e1, e2, e3} under the combination rule

giving an algebra spanned by the 8 basis elements {1, e1, e2, e3, e1e2, e2e3, e3e1, e1e2e3}, with (e1e2)2 = (e2e3)2 = (e3e1)2 = −1 and ω2 = (e1e2e3)2 = +1. The sub-algebra spanned by the 4 elements {1, i = e1, j = e2, k = e1e2} is the division ring of Hamilton's quaternions, H = Cl0,2(R). One can therefore see that

where D = Cl1,0(R) is the algebra spanned by {1, ω}, the algebra of the split-complex numbers. Equivalently,

Split-biquaternion group[edit]

The split-biquaternions form an associative ring as is clear from considering multiplications in its basis {1, ω, i, j, k, ωi, ωj, ωk}. When ω is adjoined to the quaternion group one obtains a 16 element group

( {1, i, j, k, −1, −i, −j, −k, ω, ωi, ωj, ωk, −ω, −ωi, −ωj, −ωk}, × ).

Module[edit]

Since elements {1, i, j, k} of the quaternion group can be taken as a basis of the space of split-biquaternions, it may be compared to a vector space. But split-complex numbers form a ring, not a field, so vector space is not appropriate. Rather the space of split-biquaternions forms a free module. This standard term of ring theory expresses a similarity to a vector space, and this structure by Clifford in 1873 is an instance. Split-biquaternions form an algebra over a ring, but not a group ring.

Direct sum of two quaternion rings[edit]

The direct sum of the division ring of quaternions with itself is denoted . The product of two elements and is in this direct sum algebra.

Proposition: The algebra of split-biquaternions is isomorphic to

proof: Every split-biquaternion has an expression q = w + z ω where w and z are quaternions and ω2 = +1. Now if p = u + v ω is another split-biquaternion, their product is

The isomorphism mapping from split-biquaternions to is given by

In, the product of these images, according to the algebra-product of indicated above, is

This element is also the image of pq under the mapping into Thus the products agree, the mapping is a homomorphism; and since it is bijective, it is an isomorphism.

Though split-biquaternions form an eight-dimensional space like Hamilton's biquaternions, on the basis of the Proposition it is apparent that this algebra splits into the direct sum of two copies of the real quaternions.

Hamilton biquaternion[edit]

The split-biquaternions should not be confused with the (ordinary) biquaternions previously introduced by William Rowan Hamilton. Hamilton's biquaternions are elements of the algebra

Synonyms[edit]

The following terms and compounds refer to the split-biquaternion algebra:

See also[edit]

References[edit]

  • Clifford, W. K. (1873). "Preliminary Sketch of Biquaternions". In Tucker, R. (ed.). Mathematical Papers. pp. 195–197.
  • Clifford, W. K. (1882). "The Classification of Geometric Algebras". In Tucker, R. (ed.). Mathematical Papers. p. 401.
  • Girard, P. R. (1984). "The quaternion group and modern physics". Eur. J. Phys. 5 (1): 25–32. Bibcode:1984EJPh....5...25G. doi:10.1088/0143-0807/5/1/007. S2CID 250775753.
  • Rooney, Joe (2007). "William Kingdon Clifford". In Ceccarelli, Marco (ed.). Distinguished Figures in Mechanism and Machine Science: Their Contributions and Legacies. Springer. pp. 79–. ISBN 978-1-4020-6366-4.
  • Joly, Charles Jasper (1905). A Manual of Quaternions. Macmillan. p. 21.
  • Rosenfeld, Boris (1997). Geometry of Lie Groups. Kluwer. p. 48. ISBN 978-0-7923-4390-5.
  • Bourbaki, N. (2013) [1994]. Elements of the History of Mathematics. Translated by Meldrum, J. Springer. p. 137. ISBN 978-3-642-61693-8.
  • van der Waerden, B. L. (1985). A History of Algebra. Springer. p. 188. ISBN 978-0-387-13610-3.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Split-biquaternion&oldid=1231055387"

    Categories: 
    Clifford algebras
    Historical treatment of quaternions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 26 June 2024, at 06:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki