Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The seed-based d mapping approach  



1.1  Overview of the method  





1.2  Inclusion criteria  





1.3  Pre-processing of studies  





1.4  Statistical comparisons  







2 SDM software  





3 References  





4 External links  














Seed-based d mapping







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Seed-based d mapping (formerly Signed differential mapping) or SDM is a statistical technique created by Joaquim Radua for meta-analyzing studies on differences in brain activity or structure which used neuroimaging techniques such as fMRI, VBM, DTIorPET. It may also refer to a specific piece of software created by the SDM Project to carry out such meta-analyses.

The seed-based d mapping approach[edit]

Overview of the method[edit]

SDM adopted and combined various positive features from previous methods, such as ALE or MKDA, and introduced a series of improvements and novel features.[1] One of the new features, introduced to avoid positive and negative findings in the same voxel as seen in previous methods, was the representation of both positive differences and negative differences in the same map, thus obtaining a signed differential map (SDM). Another relevant feature, introduced in version 2.11, was the use of effect sizes (leading to effect-size SDM or 'ES-SDM'), which allows combination of reported peak coordinates with statistical parametric maps, thus allowing more exhaustive and accurate meta-analyses.[2]

The method has three steps. First, coordinates of cluster peaks (e.g. the voxels where the differences between patients and healthy controls were highest), and statistical maps if available, are selected according to SDM inclusion criteria. Second, coordinates are used to recreate statistical maps, and effect-sizes maps and their variances are derived from t-statistics (or equivalently from p-valuesorz-scores). Finally, individual study maps are meta-analyzed using different tests to complement the main outcome with sensitivity and heterogeneity analyses.[citation needed]

Inclusion criteria[edit]

It is not uncommon in neuroimaging studies that some regions (e.g. a priori regions of interest) are more liberally thresholded than the rest of the brain. However, a meta-analysis of studies with such intra-study regional differences in thresholds would be biased towards these regions, as they are more likely to be reported just because authors apply more liberal thresholds in them. In order to overcome this issue SDM introduced a criterion in the selection of the coordinates: while different studies may employ different thresholds, you should ensure that the same threshold throughout the whole brain was used within each included study.[1]

Pre-processing of studies[edit]

After conversion of statistical parametric maps and peak coordinates to Talairach space, an SDM map is created for each study within a specific gray or white matter template.[3] Pre-processing of statistical parametric maps is straightforward, while pre-processing of reported peak coordinates requires recreating the clusters of difference by means of an un-normalized Gaussian Kernel, so that voxels closer to the peak coordinate have higher values. A rather large full-width at half-maximum (FWHM) of 20mm is used to account for different sources of spatial error, e.g. coregistration mismatch in the studies, the size of the cluster or the location of the peak within the cluster. Within a study, values obtained by close Gaussian kernels are summed, though values are combined by square-distance-weighted averaging.[2]

Statistical comparisons[edit]

SDM provides several different statistical analyses in order to complement the main outcome with sensitivity and heterogeneity analyses.

The statistical significance of the analyses is checked by standard randomization tests. It is recommended to use uncorrected p-values = 0.005, as this significance has been found in this method to be approximately equivalent to a corrected p-value = 0.05.[2]Afalse discovery rate (FDR) = 0.05 has been found in this method to be too conservative. Values in a Talairach label or coordinate can also be extracted for further processing or graphical presentation.[citation needed]

SDM software[edit]

SDM is software written by the SDM project to aid the meta-analysis of voxel-based neuroimaging data. It is distributed as freeware including a graphical interface and a menu/command-line console. It can also be integrated as an SPM extension.[citation needed]

References[edit]

  1. ^ a b c d Radua, Joaquim; Mataix-Cols, David (1 November 2009). "Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder". The British Journal of Psychiatry. 195 (5): 393–402. doi:10.1192/bjp.bp.108.055046. PMID 19880927.
  • ^ a b c d Radua, Joaquim; Mataix-Cols, David; Phillips, Mary L.; El-Hage, Wissam; Kronhaus, Dina M.; Cardoner, Narcís; Surguladze, Simon. "A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps". European Psychiatry. 27: 605–611. doi:10.1016/j.eurpsy.2011.04.001.
  • ^ Radua, Joaquim; Via, Esther; Catani, Marco; Mataix-Cols, David (2010). "Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls". Psychological Medicine. 41: 1–12. doi:10.1017/S0033291710002187. PMID 21078227.
  • ^ Radua, Joaquim; van den Heuvel, Odile A.; Surguladze, Simon; Mataix-Cols, David (5 July 2010). "Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders". Archives of General Psychiatry. 67 (7): 701–711. doi:10.1001/archgenpsychiatry.2010.70. PMID 20603451.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Seed-based_d_mapping&oldid=1172831815"

    Categories: 
    Biostatistics
    Neuroimaging
    Neuroimaging software
    Meta-analysis
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2023
     



    This page was last edited on 29 August 2023, at 16:05 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki