Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1History
 


1.1Technological motivations
 




1.2Literature
 






2Definitions
 


2.1Classification of multiple hypothesis tests
 






3Controlling procedures
 


3.1BenjaminiHochberg procedure
 




3.2BenjaminiYekutieli procedure
 




3.3Storey-Tibshirani procedure
 






4Properties
 


4.1Adaptive and scalable
 




4.2Dependency among the test statistics
 




4.3Proportion of true hypotheses
 




4.4Average power
 






5Related concepts
 


5.1False coverage rate
 




5.2Bayesian approaches
 






6See also
 




7References
 




8External links
 













False discovery rate






Deutsch
Español
فارسی
עברית
Magyar

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Instatistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errorsinnull hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" (rejected null hypotheses) that are false (incorrect rejections of the null).[1] Equivalently, the FDR is the expected ratio of the number of false positive classifications (false discoveries) to the total number of positive classifications (rejections of the null). The total number of rejections of the null include both the number of false positives (FP) and true positives (TP). Simply put, FDR = FP / (FP + TP). FDR-controlling procedures provide less stringent control of Type I errors compared to family-wise error rate (FWER) controlling procedures (such as the Bonferroni correction), which control the probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at the cost of increased numbers of Type I errors.[2]

History[edit]

Technological motivations[edit]

The modern widespread use of the FDR is believed to stem from, and be motivated by, the development in technologies that allowed the collection and analysis of a large number of distinct variables in several individuals (e.g., the expression level of each of 10,000 different genes in 100 different persons).[3] By the late 1980s and 1990s, the development of "high-throughput" sciences, such as genomics, allowed for rapid data acquisition. This, coupled with the growth in computing power, made it possible to seamlessly perform a very high number of statistical tests on a given data set. The technology of microarrays was a prototypical example, as it enabled thousands of genes to be tested simultaneously for differential expression between two biological conditions.[4]

As high-throughput technologies became common, technological and/or financial constraints led researchers to collect datasets with relatively small sample sizes (e.g. few individuals being tested) and large numbers of variables being measured per sample (e.g. thousands of gene expression levels). In these datasets, too few of the measured variables showed statistical significance after classic correction for multiple tests with standard multiple comparison procedures. This created a need within many scientific communities to abandon FWER and unadjusted multiple hypothesis testing for other ways to highlight and rank in publications those variables showing marked effects across individuals or treatments that would otherwise be dismissed as non-significant after standard correction for multiple tests. In response to this, a variety of error rates have been proposed—and become commonly used in publications—that are less conservative than FWER in flagging possibly noteworthy observations. The FDR is useful when researchers are looking for "discoveries" that will give them followup work (E.g.: detecting promising genes for followup studies), and are interested in controlling the proportion of "false leads" they are willing to accept.

Literature[edit]

The FDR concept was formally described by Yoav Benjamini and Yosef Hochberg in 1995[1] (BH procedure) as a less conservative and arguably more appropriate approach for identifying the important few from the trivial many effects tested. The FDR has been particularly influential, as it was the first alternative to the FWER to gain broad acceptance in many scientific fields (especially in the life sciences, from genetics to biochemistry, oncology and plant sciences).[3] In 2005, the Benjamini and Hochberg paper from 1995 was identified as one of the 25 most-cited statistical papers.[5]

Prior to the 1995 introduction of the FDR concept, various precursor ideas had been considered in the statistics literature. In 1979, Holm proposed the Holm procedure,[6] a stepwise algorithm for controlling the FWER that is at least as powerful as the well-known Bonferroni adjustment. This stepwise algorithm sorts the p-values and sequentially rejects the hypotheses starting from the smallest p-values.

Benjamini (2010) said that the false discovery rate,[3] and the paper Benjamini and Hochberg (1995), had its origins in two papers concerned with multiple testing:

The BH procedure was proven to control the FDR for independent tests in 1995 by Benjamini and Hochberg.[1] In 1986, R. J. Simes offered the same procedure as the "Simes procedure", in order to control the FWER in the weak sense (under the intersection null hypothesis) when the statistics are independent.[10]

Definitions[edit]

Based on definitions below we can define Q as the proportion of false discoveries among the discoveries (rejections of the null hypothesis):

.

where is the number of false discoveries and is the number of true discoveries.

The false discovery rate (FDR) is then simply:[1]

where is the expected valueof. The goal is to keep FDR below a given threshold q. To avoid division by zero, is defined to be 0 when . Formally, .[1]

Classification of multiple hypothesis tests[edit]

The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H1H2, ..., Hm. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant. Summing each type of outcome over all Hi  yields the following random variables:

Null hypothesis is true (H0) Alternative hypothesis is true (HA) Total
Test is declared significant V S R
Test is declared non-significant U T
Total m

Inm hypothesis tests of which are true null hypotheses, R is an observable random variable, and S, T, U, and V are unobservable random variables.

Controlling procedures[edit]

The settings for many procedures is such that we have null hypotheses tested and their corresponding p-values. We list these p-values in ascending order and denote them by . A procedure that goes from a small test-statistic to a large one will be called a step-up procedure. In a similar way, in a "step-down" procedure we move from a large corresponding test statistic to a smaller one.

Benjamini–Hochberg procedure[edit]

The Benjamini-Hochberg procedure applied to a set of m = 20 ascendingly ordered pvalues, with a false discovery control level α = 0.05. The p-values of the rejected null hypothesis (i.e. declared discoveries) are colored in red. Note that there are rejected p-values which are above the rejection line (in blue) since all null hypothesis of p-values which are ranked before the pvalue of the last intersection are rejected. The approximations MFDR = 0.02625 and AFDR = 0.00730, here.

The Benjamini–Hochberg procedure (BH step-up procedure) controls the FDR at level .[1] It works as follows:

  1. For a given , find the largest k such that
  2. Reject the null hypothesis (i.e., declare discoveries) for all for

Geometrically, this corresponds to plotting vs. k (on the y and x axes respectively), drawing the line through the origin with slope , and declaring discoveries for all points on the left, up to, and including the last point that is not above the line.

The BH procedure is valid when the m tests are independent, and also in various scenarios of dependence, but is not universally valid.[11] It also satisfies the inequality:

If an estimator of is inserted into the BH procedure, it is no longer guaranteed to achieve FDR control at the desired level.[3] Adjustments may be needed in the estimator and several modifications have been proposed.[12][13][14][15]

Note that the mean for these m tests is , the Mean(FDR ) or MFDR, adjusted for m independent or positively correlated tests (see AFDR below). The MFDR expression here is for a single recomputed value of and is not part of the Benjamini and Hochberg method.

Benjamini–Yekutieli procedure[edit]

The Benjamini–Yekutieli procedure controls the false discovery rate under arbitrary dependence assumptions.[11] This refinement modifies the threshold and finds the largest k such that:

Note that can be approximated by using the Taylor series expansion and the Euler–Mascheroni constant ():

Using MFDR and formulas above, an adjusted MFDR (or AFDR) is the minimum of the mean for m dependent tests, i.e., . Another way to address dependence is by bootstrapping and rerandomization.[4][16][17]

Storey-Tibshirani procedure[edit]

Schematic representation of the Storey-Tibshirani procedure for correcting for multiple hypothesis testing, assuming correctly calculated p-values. y-axis is frequency.

In the Storey-Tibshirani procedure, q-values are used for controlling the FDR.

Properties[edit]

Adaptive and scalable[edit]

Using a multiplicity procedure that controls the FDR criterion is adaptive and scalable. Meaning that controlling the FDR can be very permissive (if the data justify it), or conservative (acting close to control of FWER for sparse problem) - all depending on the number of hypotheses tested and the level of significance.[3]

The FDR criterion adapts so that the same number of false discoveries (V) will have different implications, depending on the total number of discoveries (R). This contrasts with the family-wise error rate criterion. For example, if inspecting 100 hypotheses (say, 100 genetic mutations or SNPs for association with some phenotype in some population):

The FDR criterion is scalable in that the same proportion of false discoveries out of the total number of discoveries (Q), remains sensible for different number of total discoveries (R). For example:

Dependency among the test statistics[edit]

Controlling the FDR using the linear step-up BH procedure, at level q, has several properties related to the dependency structure between the test statistics of the m null hypotheses that are being corrected for. If the test statistics are:

Proportion of true hypotheses[edit]

If all of the null hypotheses are true (), then controlling the FDR at level q guarantees control over the FWER (this is also called "weak control of the FWER"): , simply because the event of rejecting at least one true null hypothesis is exactly the event , and the event is exactly the event (when , by definition).[1] But if there are some true discoveries to be made () then FWER ≥ FDR. In that case there will be room for improving detection power. It also means that any procedure that controls the FWER will also control the FDR.

Average power[edit]

The average power of the Benjamini-Hochberg procedure can be computed analytically[18]

Related concepts[edit]

The discovery of the FDR was preceded and followed by many other types of error rates. These include:

False coverage rate[edit]

The false coverage rate (FCR) is, in a sense, the FDR analog to the confidence interval. FCR indicates the average rate of false coverage, namely, not covering the true parameters, among the selected intervals. The FCR gives a simultaneous coverage at a level for all of the parameters considered in the problem. Intervals with simultaneous coverage probability 1−q can control the FCR to be bounded by q. There are many FCR procedures such as: Bonferroni-Selected–Bonferroni-Adjusted,[citation needed] Adjusted BH-Selected CIs (Benjamini and Yekutieli (2005)),[24] Bayes FCR (Yekutieli (2008)),[citation needed] and other Bayes methods.[25]

Bayesian approaches[edit]

Connections have been made between the FDR and Bayesian approaches (including empirical Bayes methods),[21][26][27] thresholding wavelets coefficients and model selection,[28][29][30][31][32]and generalizing the confidence interval into the false coverage statement rate (FCR).[24]

See also[edit]

References[edit]

  1. ^ a b c d e f g h i Benjamini Y, Hochberg Y (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing". Journal of the Royal Statistical Society, Series B. 57 (1): 289–300. MR 1325392.
  • ^ Shaffer, J P (January 1995). "Multiple Hypothesis Testing". Annual Review of Psychology. 46 (1): 561–584. doi:10.1146/annurev.ps.46.020195.003021. S2CID 7696063. Gale A16629837.
  • ^ a b c d e f g Benjamini Y (2010). "Discovering the false discovery rate". Journal of the Royal Statistical Society, Series B. 72 (4): 405–416. doi:10.1111/j.1467-9868.2010.00746.x.
  • ^ a b Storey JD, Tibshirani R (August 2003). "Statistical significance for genomewide studies". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9440–5. Bibcode:2003PNAS..100.9440S. doi:10.1073/pnas.1530509100. PMC 170937. PMID 12883005.
  • ^ Ryan TP, Woodall WH (2005). "The most-cited statistical papers". Journal of Applied Statistics. 32 (5): 461–474. Bibcode:2005JApSt..32..461R. doi:10.1080/02664760500079373. S2CID 109615204.
  • ^ Holm S (1979). "A simple sequentially rejective multiple test procedure". Scandinavian Journal of Statistics. 6 (2): 65–70. JSTOR 4615733. MR 0538597.
  • ^ Schweder T, Spjøtvoll E (1982). "Plots of P-values to evaluate many tests simultaneously". Biometrika. 69 (3): 493–502. doi:10.1093/biomet/69.3.493.
  • ^ Hochberg Y, Benjamini Y (July 1990). "More powerful procedures for multiple significance testing". Statistics in Medicine. 9 (7): 811–8. doi:10.1002/sim.4780090710. PMID 2218183.
  • ^ a b Soric B (June 1989). "Statistical "Discoveries" and Effect-Size Estimation". Journal of the American Statistical Association. 84 (406): 608–610. doi:10.1080/01621459.1989.10478811. JSTOR 2289950.
  • ^ Simes RJ (1986). "An improved Bonferroni procedure for multiple tests of significance". Biometrika. 73 (3): 751–754. doi:10.1093/biomet/73.3.751.
  • ^ a b c d e Benjamini Y, Yekutieli D (2001). "The control of the false discovery rate in multiple testing under dependency". Annals of Statistics. 29 (4): 1165–1188. doi:10.1214/aos/1013699998. MR 1869245.
  • ^ Storey JD, Taylor JE, Siegmund D (2004). "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach". Journal of the Royal Statistical Society, Series B. 66: 187–205. doi:10.1111/j.1467-9868.2004.00439.x. S2CID 12646251.
  • ^ Benjamini Y, Krieger AM, Yekutieli D (2006). "Adaptive linear step-up procedures that control the false discovery rate". Biometrika. 93 (3): 491–507. doi:10.1093/biomet/93.3.491.
  • ^ Gavrilov Y, Benjamini Y, Sarkar SK (2009). "An adaptive step-down procedure with proven FDR control under independence". The Annals of Statistics. 37 (2): 619. arXiv:0903.5373. doi:10.1214/07-AOS586. S2CID 16913244.
  • ^ Blanchard G, Roquain E (2008). "Two simple sufficient conditions for FDR control". Electronic Journal of Statistics. 2: 963–992. arXiv:0802.1406. doi:10.1214/08-EJS180. S2CID 16662020.
  • ^ Yekutieli D, Benjamini Y (1999). "Resampling based False Discovery Rate controlling procedure for dependent test statistics". J. Statist. Planng Inf. 82 (1–2): 171–196. doi:10.1016/S0378-3758(99)00041-5.
  • ^ van der Laan MJ, Dudoit S (2007). Multiple Testing Procedures with Applications to Genomics. New York: Springer.
  • ^ Glueck, Deborah H; Mandel, Jan; Karimpour-Fard, Anis; Hunter, Lawrence; Muller, Keith E (30 January 2008). "Exact Calculations of Average Power for the Benjamini-Hochberg Procedure". The International Journal of Biostatistics. 4 (1): Article 11. doi:10.2202/1557-4679.1103. PMC 3020656. PMID 21243075.
  • ^ Sarkar SK (2007). "Stepup procedures controlling generalized FWER and generalized FDR". The Annals of Statistics. 35 (6): 2405–20. arXiv:0803.2934. doi:10.1214/009053607000000398. S2CID 14784911.
  • ^ Sarkar SK, Guo W (June 2009). "On a generalized false discovery rate". The Annals of Statistics. 37 (3): 1545–65. arXiv:0906.3091. doi:10.1214/08-AOS617. JSTOR 30243677. S2CID 15746841.
  • ^ a b Efron B (2008). "Microarrays, empirical Bayes and the two groups model". Statistical Science. 23: 1–22. arXiv:0808.0603. doi:10.1214/07-STS236. S2CID 8417479.
  • ^ a b Storey JD (2002). "A direct approach to false discovery rates" (PDF). Journal of the Royal Statistical Society, Series B. 64 (3): 479–498. CiteSeerX 10.1.1.320.7131. doi:10.1111/1467-9868.00346. S2CID 122987911.
  • ^ Benjamini Y (December 2010). "Simultaneous and selective inference: Current successes and future challenges". Biometrical Journal. Biometrische Zeitschrift. 52 (6): 708–21. doi:10.1002/bimj.200900299. PMID 21154895. S2CID 8806192.
  • ^ a b Benjamini Y, Yekutieli Y (2005). "False discovery rate controlling confidence intervals for selected parameters". Journal of the American Statistical Association. 100 (469): 71–80. doi:10.1198/016214504000001907. S2CID 23202143.
  • ^ Zhao Z, Gene Hwang JT (2012). "Empirical Bayes false coverage rate controlling confidence intervals". Journal of the Royal Statistical Society, Series B. 74 (5): 871–891. doi:10.1111/j.1467-9868.2012.01033.x. hdl:10.1111/j.1467-9868.2012.01033.x. S2CID 111420152.
  • ^ Storey JD (2003). "The positive false discovery rate: A Bayesian interpretation and the q-value". Annals of Statistics. 31 (6): 2013–2035. doi:10.1214/aos/1074290335.
  • ^ Efron B (2010). Large-Scale Inference. Cambridge University Press. ISBN 978-0-521-19249-1.
  • ^ Abramovich F, Benjamini Y, Donoho D, Johnstone IM (2006). "Adapting to unknown sparsity by controlling the false discovery rate". Annals of Statistics. 34 (2): 584–653. arXiv:math/0505374. Bibcode:2005math......5374A. doi:10.1214/009053606000000074. S2CID 7581060.
  • ^ Donoho D, Jin J (2006). "Asymptotic minimaxity of false discovery rate thresholding for sparse exponential data". Annals of Statistics. 34 (6): 2980–3018. arXiv:math/0602311. Bibcode:2006math......2311D. doi:10.1214/009053606000000920. S2CID 9080115.
  • ^ Benjamini Y, Gavrilov Y (2009). "A simple forward selection procedure based on false discovery rate control". Annals of Applied Statistics. 3 (1): 179–198. arXiv:0905.2819. Bibcode:2009arXiv0905.2819B. doi:10.1214/08-AOAS194. S2CID 15719154.
  • ^ Donoho D, Jin JS (2004). "Higher criticism for detecting sparse heterogeneous mixtures". Annals of Statistics. 32 (3): 962–994. arXiv:math/0410072. Bibcode:2004math.....10072D. doi:10.1214/009053604000000265. S2CID 912325.
  • ^ Stoica P, Babu P (2022). "False discovery rate (FDR) and familywise error rate (FER) rules for model selection in signal processing applications". IEEE Open Journal of Signal Processing. 3 (1): 403–416. doi:10.1109/OJSP.2022.3213128.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=False_discovery_rate&oldid=1224566859"

    Categories: 
    Statistical hypothesis testing
    Summary statistics for contingency tables
    Multiple comparisons
    Israeli inventions
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from August 2012
    Articles with unsourced statements from June 2021
     



    This page was last edited on 19 May 2024, at 03:36 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki