Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mobility of selenium in the environment  





2 References  





3 See also  














Selenium-79






Čeština
Español
Interlingua
Nederlands
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Selenium-79, 79Se
General
Symbol79Se
Namesselenium-79, 79Se, Se-79
Protons (Z)34
Neutrons (N)45
Nuclide data
Natural abundancetrace
Half-life (t1/2)327000±28000 years
Spin7/2+
Excess energy−75917.46±0.22 keV
Binding energy8695.592±0.003 keV
Decay products79Br
Decay modes
Decay modeDecay energy (MeV)
Beta decay0.1506
Isotopes of selenium
Complete table of nuclides

Selenium-79 is a radioisotopeofselenium present in spent nuclear fuel and the wastes resulting from reprocessing this fuel. It is one of only seven long-lived fission products. Its fission yield is low (about 0.04%), as it is near the lower end of the mass range for fission products. Its half-life has been variously reported as 650,000 years, 65,000 years, 1.13 million years, 480,000 years, 295,000 years, 377,000 years and most recently with best current precision, 327,000 years.[1][2]

79Se decays to 79Br by emitting a beta particle with no attendant gamma radiation (i.e., 100% β decay). This complicates its detection and liquid scintillation counting (LSC) is required for measuring it in environmental samples. The low specific activity (5.1 × 108 Bq/g) and relatively low energy (151 keV) of its beta particles have been said to limit the radioactive hazards of this isotope.[3]

Performance assessment calculations for the Belgian deep geological repository estimated 79Se may be the major contributor to activity release in terms of becquerels (decays per second), "attributable partly to the uncertainties about its migration behaviour in the Boom Clay and partly to its conversion factor in the biosphere." (p. 169).[4] However, "calculations for the Belgian safety assessments use a half-life of 65 000 years" (p. 177), much less than the currently estimated half-life, and "the migration parameters ... have been estimated very cautiously for 79Se." (p. 179)

Neutron absorption cross sections for 79Se have been estimated at 50 barns for thermal neutrons and 60.9 barns for resonance integral.[5]

Selenium-80 and selenium-82 have higher fission yields, about 20 times the yield of 79Se in the case of uranium-235, 6 times in the case of plutonium-239oruranium-233, and 14 times in the case of plutonium-241.[6]

Mobility of selenium in the environment[edit]

Due to redox-disequilibrium, selenium could be very reluctant to abiotic chemical reduction and would be released from the waste (spent fuel or vitrified waste) as selenate (SeO2–
4
), a soluble Se(VI) species, not sorbed onto clay minerals. Without solubility limit and retardation for aqueous selenium, the dose of 79Se is comparable to that of 129I. Moreover, selenium is an essential micronutrient as it is present in the catalytic centers in the glutathione peroxidase, an enzyme needed by many organisms for the protection of their cell membrane against oxidative stress damages; therefore, radioactive 79Se can be easily bioconcentrated in the food web. In the presence of nitrate (NO
3
) released in deep geological clay formations by bituminized waste issued from the spent fuel dissolution step during their reprocessing, even reduced forms of selenium could be easily oxidised and mobilised.[7]

  • e
  • Nuclide t12 Yield Q[a 1] βγ
    (Ma) (%)[a 2] (keV)
    99Tc 0.211 6.1385 294 β
    126Sn 0.230 0.1084 4050[a 3] βγ
    79Se 0.327 0.0447 151 β
    135Cs 1.33 6.9110[a 4] 269 β
    93Zr 1.53 5.4575 91 βγ
    107Pd 6.5   1.2499 33 β
    129I 15.7   0.8410 194 βγ
    1. ^ Decay energy is split among β, neutrino, and γ if any.
  • ^ Per 65 thermal neutron fissions of 235U and 35 of 239Pu.
  • ^ Has decay energy 380 keV, but its decay product 126Sb has decay energy 3.67 MeV.
  • ^ Lower in thermal reactors because 135Xe, its predecessor, readily absorbs neutrons.
  • References[edit]

    1. ^ "Home". Ptb.de. 22 June 2017. Retrieved 2017-07-14.
  • ^ Jörg, G., Bühnemann, R., Hollas, S., Kivel, N., Kossert, K., Van Winckel, S., Lierse v. Gostomski, Ch. Applied Radiation and Isotopes 68 (2010), 2339–2351
  • ^ "ANL factsheet" (PDF). Ead.anl.gov. Archived from the original (PDF) on 2004-06-15. Retrieved 2017-07-14.
  • ^ Marivoet; et al. (2001). "Safir-2 report" (PDF). Nirond.be. Retrieved 2017-07-14.
  • ^ "Archived copy". Archived from the original on 2011-06-05. Retrieved 2008-05-11.{{cite web}}: CS1 maint: archived copy as title (link)
  • ^ "Nuclear Data for Safeguards". Nds.iaea.org. Retrieved 2017-07-14.
  • ^ Wright, Winfield G. (1999-07-01). "Oxidation and mobilization of selenium by nitrate in irrigation drainage". J. Environ. Qual. 28 (4): 1182–1187. doi:10.2134/jeq1999.00472425002800040019x. Retrieved 2008-05-11.
  • See also[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Selenium-79&oldid=1228883523"

    Categories: 
    Fission products
    Isotopes of selenium
    Radioactive waste
    Hidden categories: 
    CS1 maint: archived copy as title
    Articles with short description
    Short description is different from Wikidata
    Isotope content page
     



    This page was last edited on 13 June 2024, at 18:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki