Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Self aligning torque







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A coordinate system used for tire analysis by Pacejka and Cossalter. The origin is at the intersection of three planes: the wheel midplane, the ground plane, and a vertical plane aligned with the axle (not pictured). The x-axis is in the ground plane and the midplane and is oriented forward, approximately in the direction of travel; the y-axis is also in the ground plane and rotated 90º clockwise from the x-axis when viewed from above; and the z-axis is normal to the ground plane and downward from the origin. Self aligning torque , slip angle , and camber angle are also shown.

Self aligning torque (SAT), also known as aligning torqueoraligning moment (Mz, moment about the z direction), is the torque that a tire creates as it rolls along, which tends to steer it, i.e. rotate it around its vertical axis. In the presence of a non-zero slip angle, this torque tends to steer the tire toward the direction in which it is traveling, hence its name.[1][2]

The magnitude of this torque can be calculated as the product of the lateral force generated at the contact patch and the distance behind the wheel centre at which that force acts. This distance is known as the pneumatic trail. The steering torque around a non-vertical steer axis with non-zero mechanical trail is given by:

(trail + pneumatic trail) · cos(caster angle) · Fy

Even if the slip angle and camber angle are zero, and the road is flat, this torque will still be generated due to asymmetries in the tire's construction and the asymmetrical shape and pressure distribution of the contact patch. Typically for a production tire this torque reaches a maximum at 2–4 degrees of slip (this figure depends on many variables) and falls to zero as the tire reaches its maximum lateral force capability.

See also[edit]

References[edit]

  1. ^ Hans Pacejka (2005). Tyre and Vehicle Dynamics. Elsevier. p. 113. ISBN 9780080543338. Retrieved 2018-04-06. The self-aligning torque now reads: Mz = ...
  • ^ Vittore Cossalter (2006). Motorcycle Dynamics. Lulu. p. 59. ISBN 9781430308614. Retrieved 2018-04-06. generates a moment that tends to rotate the tire in such a way as to diminish the slip angle. For this reason this moment is called the self-aligning moment.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Self_aligning_torque&oldid=1225371786"

    Categories: 
    Automotive safety
    Tires
    Motorcycle dynamics
     



    This page was last edited on 24 May 2024, at 01:07 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki