Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Factors affecting vehicle dynamics  



1.1  Drivetrain and braking  





1.2  Suspension and steering  





1.3  Distribution of mass  





1.4  Aerodynamics  





1.5  Tires  







2 Vehicle behaviours  





3 Analysis and simulation  





4 See also  





5 References  





6 Further reading  














Vehicle dynamics






العربية
Deutsch
Español
فارسی
Français
Italiano
Svenska
Tagalog

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics. It may be applied for motorized vehicles (such as automobiles), bicycles and motorcycles, aircraft, and watercraft.

Factors affecting vehicle dynamics[edit]

The aspects of a vehicle's design which affect the dynamics can be grouped into drivetrain and braking, suspension and steering, distribution of mass, aerodynamics and tires.

Drivetrain and braking[edit]

Suspension and steering[edit]

Some attributes relate to the geometry of the suspension, steering and chassis. These include:

Distribution of mass[edit]

Some attributes or aspects of vehicle dynamics are purely due to mass and its distribution. These include:

Aerodynamics[edit]

Some attributes or aspects of vehicle dynamics are purely aerodynamic. These include:

Tires[edit]

Some attributes or aspects of vehicle dynamics can be attributed directly to the tires. These include:

Vehicle behaviours[edit]

Some attributes or aspects of vehicle dynamics are purely dynamic. These include:

Analysis and simulation[edit]

The dynamic behavior of vehicles can be analysed in several different ways.[1] This can be as straightforward as a simple spring mass system, through a three-degree of freedom (DoF) bicycle model, to a large degree of complexity using a multibody system simulation package such as MSC ADAMSorModelica. As computers have gotten faster, and software user interfaces have improved, commercial packages such as CarSim have become widely used in industry for rapidly evaluating hundreds of test conditions much faster than real time. Vehicle models are often simulated with advanced controller designs provided as software in the loop (SIL) with controller design software such as Simulink, or with physical hardware in the loop (HIL).

Vehicle motions are largely due to the shear forces generated between the tires and road, and therefore the tire model is an essential part of the math model. In current vehicle simulator models, the tire model is the weakest and most difficult part to simulate.[2] The tire model must produce realistic shear forces during braking, acceleration, cornering, and combinations, on a range of surface conditions. Many models are in use. Most are semi-empirical, such as the Pacejka Magic Formula model.

Racing car games or simulators are also a form of vehicle dynamics simulation. In early versions many simplifications were necessary in order to get real-time performance with reasonable graphics. However, improvements in computer speed have combined with interest in realistic physics, leading to driving simulators that are used for vehicle engineering using detailed models such as CarSim.

It is important that the models should agree with real world test results, hence many of the following tests are correlated against results from instrumented test vehicles.

Techniques include:

See also[edit]

References[edit]

  1. ^ Elkady, Mustafa; Elmarakbi, Ahmed (26 September 2012). "Modelling and analysis of vehicle crash system integrated with different VDCS under high speed impacts" (PDF). Central European Journal of Engineering. 2 (4): 585–602. Bibcode:2012CEJE....2..585E. doi:10.2478/s13531-012-0035-z. S2CID 109017056.
  • ^ Rachel Evans Quantum leaps, Automotive Testing Technology International, September 2015, p.43 quote from MTS' Mark Gillian: "From an OEM perspective, thermal modelling may be overkill but the tire models are still the weak point of any vehicle model"
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Vehicle_dynamics&oldid=1225060246"

    Categories: 
    Vehicle dynamics
    Automotive engineering
    Automotive technologies
    Driving techniques
    Dynamics (mechanics)
    Vehicle technology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from April 2018
    All articles needing additional references
     



    This page was last edited on 22 May 2024, at 03:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki