Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Basic properties  





3 Some algebraic identities  





4 Properties in mathematical analysis  



4.1  Discontinuity at zero  





4.2  Smooth approximations and limits  





4.3  Differentiation and integration  





4.4  Fourier transform  







5 Generalizations  



5.1  Complex signum  





5.2  Polar decomposition of matrices  





5.3  Signum as a generalized function  







6 See also  





7 Notes  














Sign function






العربية

Български
Bosanski
Català
Чӑвашла
Čeština
Deutsch
Eesti
Ελληνικά
Español
Esperanto
فارسی
Français
Galego

Հայերեն
ि
Bahasa Indonesia
Íslenska
Italiano
עברית
Latina
Magyar
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
Shqip
Slovenčina
Српски / srpski
Suomi
Svenska
Tagalog
ி

Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Signum function

Inmathematics, the sign functionorsignum function (from signum, Latin for "sign") is a function that has the value −1, +1or0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as or.[1]

Definition

[edit]

The signum function of a real number is a piecewise function which is defined as follows:[1]

The law of trichotomy states that every real number must be positive, negative or zero. The signum function denotes which unique category a number falls into by mapping it to one of the values −1, +1or0, which can then be used in mathematical expressions or further calculations.

For example:

Basic properties

[edit]

Any real number can be expressed as the product of its absolute value and its sign function:

It follows that whenever is not equal to 0 we have

Similarly, for any real number , We can also be certain that: and so

Some algebraic identities

[edit]

The signum can also be written using the Iverson bracket notation:

The signum can also be written using the floor and the absolute value functions: If is accepted to be equal to 1, the signum can also be written for all real numbers as

Properties in mathematical analysis

[edit]

Discontinuity at zero

[edit]
The sign function is not continuousat.

Although the sign function takes the value −1 when is negative, the ringed point (0, −1) in the plot of indicates that this is not the case when . Instead, the value jumps abruptly to the solid point at (0, 0) where . There is then a similar jump to when is positive. Either jump demonstrates visually that the sign function is discontinuous at zero, even though it is continuous at any point where is either positive or negative.

These observations are confirmed by any of the various equivalent formal definitions of continuityinmathematical analysis. A function , such as is continuous at a point if the value can be approximated arbitrarily closely by the sequence of values where the make up any infinite sequence which becomes arbitrarily close to as becomes sufficiently large. In the notation of mathematical limits, continuity of at requires that as for any sequence for which The arrow symbol can be read to mean approaches, or tends to, and it applies to the sequence as a whole.

This criterion fails for the sign function at . For example, we can choose to be the sequence which tends towards zero as increases towards infinity. In this case, as required, but and for each so that . This counterexample confirms more formally the discontinuity of at zero that is visible in the plot.

Despite the sign function having a very simple form, the step change at zero causes difficulties for traditional calculus techniques, which are quite stringent in their requirements. Continuity is a frequent constraint. One solution can be to approximate the sign function by a smooth continuous function; others might involve less stringent approaches that build on classical methods to accommodate larger classes of function.

Smooth approximations and limits

[edit]

The signum function coincides with the limits and as well as,

Here, is the Hyperbolic tangent and the superscript of -1, above it, is shorthand notation for the inverse function of the Trigonometric function, tangent.

For , a smooth approximation of the sign function is Another approximation is which gets sharper as ; note that this is the derivative of . This is inspired from the fact that the above is exactly equal for all nonzero if, and has the advantage of simple generalization to higher-dimensional analogues of the sign function (for example, the partial derivatives of ).

See Heaviside step function § Analytic approximations.

Differentiation and integration

[edit]

The signum function isdifferentiable everywhere except when Its derivative is zero when is non-zero:

This follows from the differentiability of any constant function, for which the derivative is always zero on its domain of definition. The signum acts as a constant function when it is restricted to the negative open region where it equals -1. It can similarly be regarded as a constant function within the positive open region where the corresponding constant is +1. Although these are two different constant functions, their derivative is equal to zero in each case.

It is not possible to define a classical derivative at , because there is a discontinuity there. Nevertheless, the signum function has a definite integral between any pair of finite values a and b, even when the interval of integration includes zero. The resulting integral for a and b is then equal to the difference between their absolute values:

Conversely, the signum function is the derivative of the absolute value function, except where there is an abrupt change in gradient before and after zero:

We can understand this as before by considering the definition of the absolute value on the separate regions and For example, the absolute value function is identical to in the region whose derivative is the constant value +1, which equals the value of there.

Because the absolute value is a convex function, there is at least one subderivative at every point, including at the origin. Everywhere except zero, the resulting subdifferential consists of a single value, equal to the value of the sign function. In contrast, there are many subderivatives at zero, with just one of them taking the value . A subderivative value 0 occurs here because the absolute value function is at a minimum. The full family of valid subderivatives at zero constitutes the subdifferential interval , which might be thought of informally as "filling in" the graph of the sign function with a vertical line through the origin, making it continuous as a two dimensional curve.

In integration theory, the signum function is a weak derivative of the absolute value function. Weak derivatives are equivalent if they are equal almost everywhere, making them impervious to isolated anomalies at a single point. This includes the change in gradient of the absolute value function at zero, which prohibits there being a classical derivative.

Although it is not differentiable at in the ordinary sense, under the generalized notion of differentiation in distribution theory, the derivative of the signum function is two times the Dirac delta function. This can be demonstrated using the identity [2] where is the Heaviside step function using the standard formalism. Using this identity, it is easy to derive the distributional derivative:[3]

Fourier transform

[edit]

The Fourier transform of the signum function is[4] where means taking the Cauchy principal value.

Generalizations

[edit]

Complex signum

[edit]

The signum function can be generalized to complex numbers as: for any complex number except . The signum of a given complex number is the point on the unit circle of the complex plane that is nearest to . Then, for , where is the complex argument function.

For reasons of symmetry, and to keep this a proper generalization of the signum function on the reals, also in the complex domain one usually defines, for :

Another generalization of the sign function for real and complex expressions is ,[5] which is defined as: where is the real part of and is the imaginary part of .

We then have (for ):

Polar decomposition of matrices

[edit]

Thanks to the Polar decomposition theorem, a matrix ( and ) can be decomposed as a product where is a unitary matrix and is a self-adjoint, or Hermitian, positive definite matrix, both in . If is invertible then such a decomposition is unique and plays the role of 's signum. A dual construction is given by the decomposition where is unitary, but generally different than . This leads to each invertible matrix having a unique left-signum and right-signum .

In the special case where and the (invertible) matrix , which identifies with the (nonzero) complex number , then the signum matrices satisfy and identify with the complex signum of , . In this sense, polar decomposition generalizes to matrices the signum-modulus decomposition of complex numbers.

Signum as a generalized function

[edit]

At real values of , it is possible to define a generalized function–version of the signum function, such that everywhere, including at the point , unlike , for which . This generalized signum allows construction of the algebra of generalized functions, but the price of such generalization is the loss of commutativity. In particular, the generalized signum anticommutes with the Dirac delta function[6] in addition, cannot be evaluated at ; and the special name, is necessary to distinguish it from the function . ( is not defined, but .)

See also

[edit]

Notes

[edit]
  1. ^ a b "Signum function - Maeckes". www.maeckes.nl.
  • ^ Weisstein, Eric W. "Sign". MathWorld.
  • ^ Weisstein, Eric W. "Heaviside Step Function". MathWorld.
  • ^ Burrows, B. L.; Colwell, D. J. (1990). "The Fourier transform of the unit step function". International Journal of Mathematical Education in Science and Technology. 21 (4): 629–635. doi:10.1080/0020739900210418.
  • ^ Maple V documentation. May 21, 1998
  • ^ Yu.M.Shirokov (1979). "Algebra of one-dimensional generalized functions". Theoretical and Mathematical Physics. 39 (3): 471–477. doi:10.1007/BF01017992. Archived from the original on 2012-12-08.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Sign_function&oldid=1235474454"

    Categories: 
    Special functions
    Unary operations
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages that use a deprecated format of the math tags
     



    This page was last edited on 19 July 2024, at 12:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki