Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Theory  





3 Spintronic-logic devices  



3.1  Applications  







4 Semiconductor-based spintronic devices  



4.1  Applications  





4.2  Storage media  







5 See also  





6 References  





7 Further reading  





8 External links  














Spintronics






العربية
Català
Čeština
Deutsch
Eesti
Ελληνικά
Español
Euskara
فارسی
Français

Italiano
עברית
Қазақша
Magyar

Norsk bokmål
Norsk nynorsk
Oʻzbekcha / ўзбекча

Polski
Português
Русский
Simple English
Svenska
ி
Тоҷикӣ
Türkçe
Українська
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Spintronics (aportmanteau meaning spin transport electronics[1][2][3]), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices.[4] The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

Spintronics fundamentally differs from traditional electronics in that, in addition to charge state, electron spins are used as a further degree of freedom, with implications in the efficiency of data storage and transfer. Spintronic systems are most often realised in dilute magnetic semiconductors (DMS) and Heusler alloys and are of particular interest in the field of quantum computing and neuromorphic computing.

History[edit]

Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron transport phenomena in solid-state devices. This includes the observation of spin-polarized electron injection from a ferromagnetic metal to a normal metal by Johnson and Silsbee (1985)[5] and the discovery of giant magnetoresistance independently by Albert Fert et al.[6] and Peter Grünberg et al. (1988).[7] The origin of spintronics can be traced to the ferromagnet/superconductor tunneling experiments pioneered by Meservey and Tedrow and initial experiments on magnetic tunnel junctions by Julliere in the 1970s.[8] The use of semiconductors for spintronics began with the theoretical proposal of a spin field-effect-transistor by Datta and Das in 1990[9] and of the electric dipole spin resonancebyRashba in 1960.[10]

Theory[edit]

The spin of the electron is an intrinsic angular momentum that is separate from the angular momentum due to its orbital motion. The magnitude of the projection of the electron's spin along an arbitrary axis is , implying that the electron acts as a fermion by the spin-statistics theorem. Like orbital angular momentum, the spin has an associated magnetic moment, the magnitude of which is expressed as

.

In a solid, the spins of many electrons can act together to affect the magnetic and electronic properties of a material, for example endowing it with a permanent magnetic moment as in a ferromagnet.

In many materials, electron spins are equally present in both the up and the down state, and no transport properties are dependent on spin. A spintronic device requires generation or manipulation of a spin-polarized population of electrons, resulting in an excess of spin up or spin down electrons. The polarization of any spin dependent property X can be written as

.

A net spin polarization can be achieved either through creating an equilibrium energy split between spin up and spin down. Methods include putting a material in a large magnetic field (Zeeman effect), the exchange energy present in a ferromagnet or forcing the system out of equilibrium. The period of time that such a non-equilibrium population can be maintained is known as the spin lifetime, .

In a diffusive conductor, a spin diffusion length can be defined as the distance over which a non-equilibrium spin population can propagate. Spin lifetimes of conduction electrons in metals are relatively short (typically less than 1 nanosecond). An important research area is devoted to extending this lifetime to technologically relevant timescales.

A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium.

The mechanisms of decay for a spin polarized population can be broadly classified as spin-flip scattering and spin dephasing. Spin-flip scattering is a process inside a solid that does not conserve spin, and can therefore switch an incoming spin up state into an outgoing spin down state. Spin dephasing is the process wherein a population of electrons with a common spin state becomes less polarized over time due to different rates of electron spin precession. In confined structures, spin dephasing can be suppressed, leading to spin lifetimes of milliseconds in semiconductor quantum dots at low temperatures.

Superconductors can enhance central effects in spintronics such as magnetoresistance effects, spin lifetimes and dissipationless spin-currents.[11][12]

The simplest method of generating a spin-polarised current in a metal is to pass the current through a ferromagnetic material. The most common applications of this effect involve giant magnetoresistance (GMR) devices. A typical GMR device consists of at least two layers of ferromagnetic materials separated by a spacer layer. When the two magnetization vectors of the ferromagnetic layers are aligned, the electrical resistance will be lower (so a higher current flows at constant voltage) than if the ferromagnetic layers are anti-aligned. This constitutes a magnetic field sensor.

Two variants of GMR have been applied in devices: (1) current-in-plane (CIP), where the electric current flows parallel to the layers and (2) current-perpendicular-to-plane (CPP), where the electric current flows in a direction perpendicular to the layers.

Other metal-based spintronics devices:

Spintronic-logic devices[edit]

Non-volatile spin-logic devices to enable scaling are being extensively studied.[13] Spin-transfer, torque-based logic devices that use spins and magnets for information processing have been proposed.[14][15] These devices are part of the ITRS exploratory road map. Logic-in memory applications are already in the development stage.[16][17] A 2017 review article can be found in Materials Today.[4]

A generalized circuit theory for spintronic integrated circuits has been proposed [18] so that the physics of spin transport can be utilized by SPICE developers and subsequently by circuit and system designers for the exploration of spintronics for “beyond CMOS computing.”

Applications[edit]

Read heads of magnetic hard drives are based on the GMR or TMR effect.

Motorola developed a first-generation 256 kb magnetoresistive random-access memory (MRAM) based on a single magnetic tunnel junction and a single transistor that has a read/write cycle of under 50 nanoseconds.[19] Everspin has since developed a 4 Mb version.[20] Two second-generation MRAM techniques are in development: thermal-assisted switching (TAS)[21] and spin-transfer torque (STT).[22]

Another design, racetrack memory, a novel memory architecture proposed by Dr. Stuart S. P. Parkin, encodes information in the direction of magnetization between domain walls of a ferromagnetic wire.

In 2012, persistent spin helices of synchronized electrons were made to persist for more than a nanosecond, a 30-fold increase over earlier efforts, and longer than the duration of a modern processor clock cycle.[23]

Semiconductor-based spintronic devices[edit]

Doped semiconductor materials display dilute ferromagnetism. In recent years, dilute magnetic oxides (DMOs) including ZnO based DMOs and TiO2-based DMOs have been the subject of numerous experimental and computational investigations.[24][25] Non-oxide ferromagnetic semiconductor sources (like manganese-doped gallium arsenide (Ga,Mn)As),[26] increase the interface resistance with a tunnel barrier,[27] or using hot-electron injection.[28]

Spin detection in semiconductors has been addressed with multiple techniques:

The latter technique was used to overcome the lack of spin-orbit interaction and materials issues to achieve spin transport in silicon.[33]

Because external magnetic fields (and stray fields from magnetic contacts) can cause large Hall effects and magnetoresistance in semiconductors (which mimic spin-valve effects), the only conclusive evidence of spin transport in semiconductors is demonstration of spin precession and dephasing in a magnetic field non-collinear to the injected spin orientation, called the Hanle effect.

Applications[edit]

Applications using spin-polarized electrical injection have shown threshold current reduction and controllable circularly polarized coherent light output.[34] Examples include semiconductor lasers. Future applications may include a spin-based transistor having advantages over MOSFET devices such as steeper sub-threshold slope.

Magnetic-tunnel transistor: The magnetic-tunnel transistor with a single base layer[35] has the following terminals:

The magnetocurrent (MC) is given as:

And the transfer ratio (TR) is

MTT promises a highly spin-polarized electron source at room temperature.

Storage media[edit]

Antiferromagnetic storage media have been studied as an alternative to ferromagnetism,[36] especially since with antiferromagnetic material the bits can be stored as well as with ferromagnetic material. Instead of the usual definition 0 ↔ 'magnetisation upwards', 1 ↔ 'magnetisation downwards', the states can be, e.g., 0 ↔ 'vertically-alternating spin configuration' and 1 ↔ 'horizontally-alternating spin configuration'.[37]).

The main advantages of antiferromagnetic material are:

Research is being done into how to read and write information to antiferromagnetic spintronics as their net zero magnetization makes this difficult compared to conventional ferromagnetic spintronics. In modern MRAM, detection and manipulation of ferromagnetic order by magnetic fields has largely been abandoned in favor of more efficient and scalable reading and writing by electrical current. Methods of reading and writing information by current rather than fields are also being investigated in antiferromagnets as fields are ineffective anyway. Writing methods currently being investigated in antiferromagnets are through spin-transfer torque and spin-orbit torque from the spin Hall effect and the Rashba effect. Reading information in antiferromagnets via magnetoresistance effects such as tunnel magnetoresistance is also being explored.[40]

See also[edit]

References[edit]

  1. ^ Wolf, S. A.; Chtchelkanova, A. Y.; Treger, D. M. (2006). "Spintronics—A retrospective and perspective". IBM Journal of Research and Development. 50: 101–110. doi:10.1147/rd.501.0101.
  • ^ "Physics Profile: "Stu Wolf: True D! Hollywood Story"".
  • ^ Spintronics: A Spin-Based Electronics Vision for the Future. Sciencemag.org (16 November 2001). Retrieved on 21 October 2013.
  • ^ a b Bhatti, S.; et al. (2017). "Spintronics based random access memory: a review". Materials Today. 20 (9): 530–548. doi:10.1016/j.mattod.2017.07.007. hdl:10356/146755.
  • ^ Johnson, M.; Silsbee, R. H. (1985). "Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals". Physical Review Letters. 55 (17): 1790–1793. Bibcode:1985PhRvL..55.1790J. doi:10.1103/PhysRevLett.55.1790. PMID 10031924.
  • ^ Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. (1988). "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices" (PDF). Physical Review Letters. 61 (21): 2472–2475. Bibcode:1988PhRvL..61.2472B. doi:10.1103/PhysRevLett.61.2472. PMID 10039127.
  • ^ Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. (1989). "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange". Physical Review B. 39 (7): 4828–4830. Bibcode:1989PhRvB..39.4828B. doi:10.1103/PhysRevB.39.4828. PMID 9948867.
  • ^ Julliere, M. (1975). "Tunneling between ferromagnetic films". Physics Letters A. 54 (3): 225–226. Bibcode:1975PhLA...54..225J. doi:10.1016/0375-9601(75)90174-7.
  • ^ Datta, S. & Das, B. (1990). "Electronic analog of the electrooptic modulator". Applied Physics Letters. 56 (7): 665–667. Bibcode:1990ApPhL..56..665D. doi:10.1063/1.102730.
  • ^ E. I. Rashba, Cyclotron and combined resonances in a perpendicular field, Sov. Phys. Solid State 2, 1109 -1122 (1960)
  • ^ Linder, Jacob; Robinson, Jason W. A. (2 April 2015). "Superconducting spintronics". Nature Physics. 11 (4): 307–315. arXiv:1510.00713. Bibcode:2015NatPh..11..307L. doi:10.1038/nphys3242. ISSN 1745-2473. S2CID 31028550.
  • ^ Eschrig, Matthias (2011). "Spin-polarized supercurrents for spintronics". Physics Today. 64 (1): 43–49. Bibcode:2011PhT....64a..43E. doi:10.1063/1.3541944.
  • ^ International Technology Roadmap for Semiconductors
  • ^ Behin-Aein, B.; Datta, D.; Salahuddin, S.; Datta, S. (2010). "Proposal for an all-spin logic device with built-in memory". Nature Nanotechnology. 5 (4): 266–270. Bibcode:2010NatNa...5..266B. doi:10.1038/nnano.2010.31. PMID 20190748.
  • ^ Manipatruni, Sasikanth; Nikonov, Dmitri E. and Young, Ian A. (2011) [1112.2746] Circuit Theory for SPICE of Spintronic Integrated Circuits. Arxiv.org. Retrieved on 21 October 2013.
  • ^ Crocus Partners With Starchip To Develop System-On-Chip Solutions Based on Magnetic-Logic-Unit (MLU) Technology. crocus-technology.com. 8 December 2011
  • ^ Groundbreaking New Technology for Improving the Reliability of Spintronics Logic Integrated Circuits. Nec.com. 11 June 2012.
  • ^ S. Manipatruni, D. E. Nikonov and I. A. Young, "Modeling and Design of Spintronic Integrated Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2801-2814, Dec. 2012, doi: 10.1109/TCSI.2012.2206465. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359950&isnumber=6359940
  • ^ Spintronics. Sigma-Aldrich. Retrieved on 21 October 2013.
  • ^ Everspin Archived 30 June 2012 at the Wayback Machine. Everspin. Retrieved on 21 October 2013.
  • ^ Hoberman, Barry. The Emergence of Practical MRAM Archived 21 October 2013 at the Wayback Machine. crocustechnology.com
  • ^ LaPedus, Mark (18 June 2009) Tower invests in Crocus, tips MRAM foundry deal. eetimes.com
  • ^ Walser, M.; Reichl, C.; Wegscheider, W. & Salis, G. (2012). "Direct mapping of the formation of a persistent spin helix". Nature Physics. 8 (10): 757. arXiv:1209.4857. Bibcode:2012NatPh...8..757W. doi:10.1038/nphys2383. S2CID 119209785.
  • ^ Assadi, M.H.N; Hanaor, D.A.H (2013). "Theoretical study on copper's energetics and magnetism in TiO2 polymorphs". Journal of Applied Physics. 113 (23): 233913–233913–5. arXiv:1304.1854. Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539. S2CID 94599250.
  • ^ Ogale, S.B (2010). "Dilute doping, defects, and ferromagnetism in metal oxide systems". Advanced Materials. 22 (29): 3125–3155. Bibcode:2010AdM....22.3125O. doi:10.1002/adma.200903891. PMID 20535732. S2CID 25307693.
  • ^ Jonker, B.; Park, Y.; Bennett, B.; Cheong, H.; Kioseoglou, G.; Petrou, A. (2000). "Robust electrical spin injection into a semiconductor heterostructure". Physical Review B. 62 (12): 8180. Bibcode:2000PhRvB..62.8180J. doi:10.1103/PhysRevB.62.8180.
  • ^ Hanbicki, A. T.; Jonker, B. T.; Itskos, G.; Kioseoglou, G.; Petrou, A. (2002). "Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor". Applied Physics Letters. 80 (7): 1240. arXiv:cond-mat/0110059. Bibcode:2002ApPhL..80.1240H. doi:10.1063/1.1449530. S2CID 119098659.
  • ^ Jiang, X.; Wang, R.; Van Dijken, S.; Shelby, R.; MacFarlane, R.; Solomon, G.; Harris, J.; Parkin, S. (2003). "Optical Detection of Hot-Electron Spin Injection into GaAs from a Magnetic Tunnel Transistor Source". Physical Review Letters. 90 (25): 256603. Bibcode:2003PhRvL..90y6603J. doi:10.1103/PhysRevLett.90.256603. PMID 12857153.
  • ^ Kikkawa, J.; Awschalom, D. (1998). "Resonant Spin Amplification in n-Type GaAs". Physical Review Letters. 80 (19): 4313. Bibcode:1998PhRvL..80.4313K. doi:10.1103/PhysRevLett.80.4313.
  • ^ Jonker, Berend T. Polarized optical emission due to decay or recombination of spin-polarized injected carriers – US Patent 5874749 Archived 12 December 2009 at the Wayback Machine. Issued on 23 February 1999.
  • ^ Lou, X.; Adelmann, C.; Crooker, S. A.; Garlid, E. S.; Zhang, J.; Reddy, K. S. M.; Flexner, S. D.; Palmstrøm, C. J.; Crowell, P. A. (2007). "Electrical detection of spin transport in lateral ferromagnet–semiconductor devices". Nature Physics. 3 (3): 197. arXiv:cond-mat/0701021. Bibcode:2007NatPh...3..197L. doi:10.1038/nphys543. S2CID 51390849.
  • ^ Appelbaum, I.; Huang, B.; Monsma, D. J. (2007). "Electronic measurement and control of spin transport in silicon". Nature. 447 (7142): 295–298. arXiv:cond-mat/0703025. Bibcode:2007Natur.447..295A. doi:10.1038/nature05803. PMID 17507978. S2CID 4340632.
  • ^ Žutić, I.; Fabian, J. (2007). "Spintronics: Silicon twists". Nature. 447 (7142): 268–269. Bibcode:2007Natur.447..268Z. doi:10.1038/447269a. PMID 17507969. S2CID 32830840.
  • ^ Holub, M.; Shin, J.; Saha, D.; Bhattacharya, P. (2007). "Electrical Spin Injection and Threshold Reduction in a Semiconductor Laser". Physical Review Letters. 98 (14): 146603. Bibcode:2007PhRvL..98n6603H. doi:10.1103/PhysRevLett.98.146603. PMID 17501298.
  • ^ Van Dijken, S.; Jiang, X.; Parkin, S. S. P. (2002). "Room temperature operation of a high output current magnetic tunnel transistor". Applied Physics Letters. 80 (18): 3364. Bibcode:2002ApPhL..80.3364V. doi:10.1063/1.1474610.
  • ^ Jungwirth, T. (28 April 2014). "Relativistic Approaches to Spintronics with Antiferromagnets" (PDF) (announcement of a physics colloquium at a Bavarian university). Archived from the original (PDF) on 29 April 2014. Retrieved 29 April 2014.
  • ^ This corresponds mathematically to the transition from the rotation group SO(3) to its relativistic covering, the "double group" SU(2)
  • ^ a b Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. (2016). "Antiferromagnetic spintronics". Nature Nanotechnology. 11 (3). Springer Nature: 231–241. arXiv:1509.05296. Bibcode:2016NatNa..11..231J. doi:10.1038/nnano.2016.18. ISSN 1748-3387. PMID 26936817. S2CID 5058124.
  • ^ a b Gomonay, O.; Jungwirth, T.; Sinova, J. (21 February 2017). "Concepts of antiferromagnetic spintronics". Physica Status Solidi RRL. 11 (4). Wiley: 1700022. arXiv:1701.06556. Bibcode:2017PSSRR..1100022G. doi:10.1002/pssr.201700022. ISSN 1862-6254. S2CID 73575617.
  • ^ Chappert, Claude; Fert, Albert; van Dau, Frédéric Nguyen (2007). "The emergence of spin electronics in data storage". Nature Materials. 6 (11). Springer Science and Business Media LLC: 813–823. Bibcode:2007NatMa...6..813C. doi:10.1038/nmat2024. ISSN 1476-1122. PMID 17972936. S2CID 21075877.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Spintronics&oldid=1225551009"

    Categories: 
    Spintronics
    Theoretical computer science
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description matches Wikidata
    Use American English from January 2019
    All Wikipedia articles written in American English
    Use dmy dates from October 2013
    CS1 errors: missing periodical
    Articles with FAST identifiers
    Articles with BNE identifiers
    Articles with BNF identifiers
    Articles with BNFdata identifiers
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
    Articles with NDL identifiers
    Articles with NKC identifiers
     



    This page was last edited on 25 May 2024, at 05:10 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki