Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 See also  





2 References  














Squid giant axon






Deutsch
Español
Français
Italiano
Polski
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Squid giant axon

The squid giant axon is the very large (up to 1.5 mm in diameter; typically around 0.5 mm) axon that controls part of the water jet propulsion system in squid. It was first described by L. W. Williams[1] in 1909,[2] but this discovery was forgotten until English zoologist and neurophysiologist J. Z. Young demonstrated the axon's function in the 1930s while working in the Stazione ZoologicainNaples, the Marine Biological AssociationinPlymouth and the Marine Biological LaboratoryinWoods Hole.[3][4] Squids use this system primarily for making brief but very fast movements through the water.

On the underside of the squid's body, between the head and the mantle, is a siphon through which water can be rapidly expelled by the fast contractions of the body wall muscles of the animal. This contraction is initiated by action potentials in the giant axon. Action potentials travel faster in a larger axon than a smaller one,[5] and squid have evolved the giant axon to improve the speed of their escape response. The increased radius of the squid axon decreases the internal resistance of the axon, as resistance is inversely proportional to the cross sectional area of the object. This increases the space constant (), leading to faster local depolarization and a faster action potential conduction ().[6]

In their Nobel Prize-winning work uncovering ionic mechanism of action potentials, Alan Hodgkin and Andrew Huxley performed experiments on the squid giant axon, using the longfin inshore squid as the model organism.[7] The prize was shared with John Eccles. The large diameter of the axon provided a great experimental advantage for Hodgkin and Huxley as it allowed them to insert voltage clamp electrodes inside the lumen of the axon.

While the squid axon is very large in diameter it is unmyelinated which decreases the conduction velocity substantially. The conduction velocity of a typical 0.5 mm squid axon is about 25 m/s. During a typical action potential in the cuttlefish Sepia giant axon, an influx of 3.7 pmol/cm2 (picomoles per centimeter2) of sodium is offset by a subsequent efflux of 4.3 pmol/cm2 of potassium.[8]

See also[edit]

References[edit]

  1. ^ Kingsley, J. S. (1913). "Obituary. Leonard Worcester Williams". The Anatomical Record. 7: 33–38. doi:10.1002/ar.1090070202.
  • ^ Williams, Leonard Worcester (1909). Anatomy of the Common Squid: Loligo pealii, Lesueur. Leiden, Holland: Library and Printing-office late E.J. Brill. p. 74. OCLC 697639284 – via Internet Archive.
  • ^ Young, J.Z. (April 1938). "The Functioning of the Giant Nerve Fibres of the Squid". Journal of Experimental Biology. 15 (2): 170–185. doi:10.1242/jeb.15.2.170 – via The Company of Biologists Ltd.
  • ^ Young, J.Z. (June 1985). "Cephalopods and Neuroscience". Biological Bulletin. 168 (3S): 153–158. doi:10.2307/1541328. JSTOR 1541328.
  • ^ Purves, Dale; Augustine, George J.; Fitzpatrick, David; Katz, Lawrence C.; LaMantia, Anthony-Samuel; McNamara, James O.; Williams, S. Mark (2001). "Increased Conduction Velocity as a Result of Myelination". Neuroscience. 2nd edition. Sunderland, MA.{{cite book}}: CS1 maint: location missing publisher (link)
  • ^ Holmes, William (2014). "Cable Equation". In Jaeger, Dieter; Jung, Ranu (eds.). Encyclopedia of Computational Neuroscience. New York, NY: Springer. doi:10.1007/978-1-4614-7320-6. ISBN 978-1-4614-7320-6. S2CID 29482994. Retrieved August 30, 2020.
  • ^ Hodgkin AL, Huxley AF (August 1952). "A quantitative description of membrane current and its application to conduction and excitation in nerve". The Journal of Physiology. 117 (4): 500–44. doi:10.1113/jphysiol.1952.sp004764. PMC 1392413. PMID 12991237.
  • ^ Plonsey, Robert; Barr, Roger C. (2007). Bioelectricity: A Quantitative Approach (3rd ed.). New York, NY: Springer. p. 109. ISBN 978-0-387-48864-6.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Squid_giant_axon&oldid=1224902138"

    Categories: 
    Squid
    Cephalopod zootomy
    Biology experiments
    Hidden categories: 
    CS1 maint: location missing publisher
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 21 May 2024, at 05:02 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki