Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Process  





2 Painting  





3 RYB  





4 CMY and CMYK color models and printing processes  





5 See also  





6 References  





7 Further reading  





8 External links  














Subtractive color






العربية
Català
Čeština
Dansk
Deutsch
Eesti
Español
فارسی
Français
Frysk
Italiano
Magyar
Nederlands
Norsk bokmål
Norsk nynorsk
Polski
Русский
Shqip
Simple English
Svenska
Türkçe
Tiếng Vit


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Subtractive mixing)

Subtractive color mixing
An 1877 color photo by Louis Ducos du Hauron, a French pioneer of color photography. The overlapping subtractive yellow, cyan and red (magenta) image elements can be seen clearly along the edges of the image.

Subtractive colororsubtractive color mixing predicts the spectral power distribution of light after it passes through successive layers of partially absorbing media. This idealized model is the essential principle of how dyes and pigments are used in color printing and photography, where the perception of color is elicited after white light passes through microscopic "stacks" of partially absorbing media allowing some wavelengths of light to reach the eye and not others, and also in painting, whether the colors are mixed or applied in successive layers.

Process[edit]

The subtractive color mixing model predicts the resultant spectral power distribution of light filtered through overlaid partially absorbing materials on a reflecting or transparent surface. Each layer partially absorbs some wavelengths of light from the illumination spectrum while letting others pass through, resulting in a colored appearance. The resultant spectral power distribution is predicted by sequentially taking the product of the spectral power distributions of the incoming light and transmissivity at each filter.[1]

Painting[edit]

The subtractive model also predicts the color resulting from a mixture of paints, or similar medium such as fabric dye, whether applied in layers or mixed together prior to application. In the case of paint mixed before application, incident light interacts with many different pigment particles at various depths inside the paint layer before emerging.[2] Art supply manufacturers offer colors that successfully fill the roles of the subtractive primary colors magenta and cyan. For example, the phthalocyanine blues, which became available during the 1930s, and quinacridone magenta, first offered during the 1950s, together with yellow produce more highly-saturated violets and greens than do the traditional red and blue.

RYB[edit]

An RYB color wheel

RYB (red, yellow, blue) is the traditional set of primary colors used for mixing pigments. It is used in art and art education, particularly in painting. It predated modern scientific color theory.

Red, yellow, and blue are the primary colors of the RYB color "wheel". The secondary colors, violet (or purple), orange, and green (VOG) make up another triad, conceptually formed by mixing equal amounts of red and blue, red and yellow, and blue and yellow, respectively.

Classification of pigment colors

The RYB primary colors became the foundation of 18th-century theories of color vision as the fundamental sensory qualities blended in the perception of all physical colors and equally in the physical mixture of pigments or dyes. These theories were enhanced by 18th-century investigations of a variety of purely psychological color effects, in particular, the contrast between "complementary" or opposing hues produced by color afterimages and in the contrasting shadows in colored light. These ideas and many personal color observations were summarized in two founding documents in color theory: the Theory of Colours (1810) by the German poet and government minister Johann Wolfgang von Goethe, and The Law of Simultaneous Color Contrast (1839) by the French industrial chemist Michel Eugène Chevreul.

In late 19th and early to mid-20th-century commercial printing, use of the traditional RYB terminology persisted even though the more versatile CMY (cyan, magenta, yellow) triad had been adopted, with the cyan sometimes referred to as "process blue" and the magenta as "process red".

CMY and CMYK color models and printing processes[edit]

Cyan, magenta and yellow color filters

Incolor printing, the usual primary colors are cyan, magenta and yellow (CMY). Cyan is the complement of red, meaning that the cyan serves as a filter that absorbs red. The amount of cyan ink applied to a white sheet of paper controls how much of the red light in white light will be reflected back from the paper. Ideally, the cyan ink is completely transparent to green and blue light and has no effect on those parts of the spectrum. Magenta is the complement of green, and yellow the complement of blue. Combinations of different amounts of the three inks can produce a wide range of colors with good saturation.

Ininkjet color printing and typical mass production photomechanical printing processes, a black ink K (Key) component is included, resulting in the CMYK color model. The black ink serves to cover unwanted tints in dark areas of the printed image, which result from the imperfect transparency of commercially practical CMY inks; to improve image sharpness, which tends to be degraded by imperfect registration of the three color elements; and to reduce or eliminate consumption of the more expensive color inks where only black or gray is required.

Purely photographic color processes almost never include a K component, because in all common processes the CMY dyes used are much more perfectly transparent, there are no registration errors to camouflage, and substituting a black dye for a saturated CMY combination, a trivial prospective cost-benefit at best, is technologically impractical in non-electronic analog photography.

See also[edit]

References[edit]

  1. ^ Levoy, Marc. "Additive versus subtractive color mixing". graphics.stanford.edu. Retrieved 4 November 2020. On the other hand, if you reflect light from a colored surface, or if you place a colored filter in front of a light, then some of the wavelengths present in the light may be partially or fully absorbed by the colored surface or filter. If we characterize the light as an SPD, and we characterize absorption by the surface or filter using a spectrum of reflectivity or transmissivity, respectively, i.e. the percentage of light reflected or transmitted at each wavelength, then the SPD of the outgoing light can be computed by multiplying the two spectra. This multiplication is (misleadingly) called subtractive mixing.
  • ^ Williamson, Samuel J; Cummins, Herman Z (1983). Light and Color in Nature and Art. New York: John Wiley & Sons, Inc. pp. 28–30. ISBN 0-471-08374-7. Thus subtractive color mixing laws that successfully describe how light is altered by nonspectral filters also describes how light is altered by pigments.
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Subtractive_color&oldid=1232342038"

    Categories: 
    Color space
    Color
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles lacking in-text citations from January 2012
    All articles lacking in-text citations
    Commons category link is on Wikidata
    CS1 maint: multiple names: authors list
     



    This page was last edited on 3 July 2024, at 07:31 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki