Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 See also  





3 References  














Superdiamagnetism







עברית

Oʻzbekcha / ўзбекча

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Asuperconductor acts as an essentially perfect diamagnetic material when placed in a magnetic field and it excludes the field, and so the flux lines completely avoid the region

Superdiamagnetism (orperfect diamagnetism) is a phenomenon occurring in certain materials at low temperatures, characterised by the complete absence of magnetic permeability (i.e. a volume magnetic susceptibility = −1) and the exclusion of the interior magnetic field.

Superdiamagnetism established that the superconductivity of a material was a stage of phase transition. Superconducting magnetic levitation is due to superdiamagnetism, which repels a permanent magnet which approaches the superconductor, and flux pinning, which prevents the magnet floating away.

Superdiamagnetism is a feature of superconductivity. It was identified in 1933, by Walther Meissner and Robert Ochsenfeld, but it is considered distinct from the Meissner effect which occurs when the superconductivity first forms, and involves the exclusion of magnetic fields that already penetrate the object.

Diagram of the Meissner effect. Magnetic field lines are excluded from a superconductor when it is below its critical temperature.

Theory[edit]

Fritz London and Heinz London developed the theory that the exclusion of magnetic flux is brought about by electrical screening currents that flow at the surface of the superconducting material and which generate a magnetic field that exactly cancels the externally applied field inside the superconductor. These screening currents are generated whenever a superconducting material is brought inside a magnetic field. This can be understood by the fact that a superconductor has zero electrical resistance, so that eddy currents, induced by the motion of the material inside a magnetic field, will not decay. Fritz, at the Royal Society in 1935, stated that the thermodynamic state would be described by a single wave function.

"Screening currents" also appear in a situation wherein an initially normal, conducting metal is placed inside a magnetic field. As soon as the metal is cooled below the appropriate transition temperature, it becomes superconducting. This expulsion of magnetic field upon the cooling of the metal cannot be explained any longer by merely assuming zero resistance and is called the Meissner effect. It shows that the superconducting state does not depend on the history of preparation, only upon the present values of temperature, pressure and magnetic field, and therefore is a true thermodynamic state.

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Superdiamagnetism&oldid=1229955473"

Categories: 
Magnetic levitation
Superconductivity
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles needing additional references from June 2024
All articles needing additional references
 



This page was last edited on 19 June 2024, at 17:45 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki