Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Prediction and discovery  





2 Properties and applications  





3 References  














Spin gapless semiconductor







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Spin gapless semiconductors are a novel class of materials with unique electrical band structure for different spin channels in such a way that there is no band gap (i.e., 'gapless') for one spin channel while there is a finite gap in another spin channel.[1]

In a spin-gapless semiconductor, conduction and valence band edges touch, so that no threshold energy is required to move electrons from occupied (valence) states to empty (conduction) states. This gives spin-gapless semiconductors unique properties: namely that their band structures are extremely sensitive to external influences (e.g., pressure or magnetic field). [2]

Because very little energy is needed to excite electrons in an SGS, charge concentrations are very easily ‘tuneable’. For example, this can be done by introducing a new element (doping) or by application of a magnetic or electric field (gating).

A new type of SGS identified in 2017, known as Dirac-type linear spin-gapless semiconductors, has linear dispersion and is considered an ideal platform for massless and dissipationless spintronics because spin-orbital coupling opens a gap for the spin fully polarized conduction and valence band, and as a result, the interior of the sample becomes an insulator, however, an electrical current can flow without resistance at the sample edge. This effect, the quantum anomalous Hall effect has only previously been realised in magnetically doped topological insulators.[2]

As well as Dirac/linear SGSs, the other major category of SGS are parabolic spin gapless semiconductors.[3] [4]

Electron mobility in such materials is two to four orders of magnitude higher than in classical semiconductors.[5]

SGSs are topologically non-trivial.[3]

Prediction and discovery[edit]

The spin gapless semiconductor was first proposed as a new spintronics concept and a new class of candidate spintronic materials in 2008 in a paper by Xiaolin Wang of the University of Wollongong in Australia.[6] [7] [8]

Properties and applications[edit]

The dependence of bandgap on spin direction leads to high carrier-spin-polarization, and offers promising spin-controlled electronic and magnetic properties for spintronics applications.[9]

The spin gapless semiconductor is a promising candidate material for spintronics because its charged particles can be fully spin-polarised, so that spin can be controlled via only a small applied external energy.[2]

References[edit]

  1. ^ Skaftouros, S.; Özdoğan, K.; Şaşıoğlu, E.; Galanakis, I. (2013-01-14). "Search for spin gapless semiconductors: The case of inverse Heusler compounds". Applied Physics Letters. 102 (2). arXiv:1210.5355. doi:10.1063/1.4775599. ISSN 0003-6951. S2CID 311785.
  • ^ a b c "Spin gapless semiconductors: Promising materials for novel spintronics and dissipationless current flow | ARC Centre of Excellence in Future Low-Energy Electronics Technologies".
  • ^ a b Wang, Xiaotian; Li, Tingzhou; Cheng, Zhenxiang; Wang, Xiao-Lin; Chen, Hong (2018). "Recent advances in Dirac spin-gapless semiconductors". Applied Physics Reviews. 5 (4): 041103. Bibcode:2018ApPRv...5d1103W. doi:10.1063/1.5042604. S2CID 125280965.
  • ^ Wang, Xiaotian (2018). "Search for a new member of parabolic-like spin-gapless semiconductors: The case of diamond-like quaternary compound CuMn2InSe4". Applied Physics Reviews. 10: 301. Bibcode:2018ResPh..10..301H. doi:10.1016/j.rinp.2018.06.031.
  • ^ Wang, Xiao-Lin (2016). "Dirac spin-gapless semiconductors: Promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects". National Science Review. 4 (2): 252–257. arXiv:1607.06057. doi:10.1093/nsr/nww069.
  • ^ Wang, Xiaolin (18 April 2008). "Proposal for a New Class of Materials: Spin Gapless Semiconductors". Physical Review Letters. 100 (15): 156404. Bibcode:2008PhRvL.100o6404W. doi:10.1103/physrevlett.100.156404. PMID 18518135. S2CID 22372621.
  • ^ "Media Centre | University of Wollongong".
  • ^ "Gapless oxide semiconductors: Designer spin". NPG Asia Materials: 1. 2008. doi:10.1038/asiamat.2008.78.
  • ^ "Half-Metals and Spin-Gapless Semiconductors". {{cite journal}}: Cite journal requires |journal= (help)

  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Spin_gapless_semiconductor&oldid=1189353303"

    Categories: 
    Condensed matter physics
    Semiconductors
    Spintronics
    Condensed matter stubs
    Hidden categories: 
    CS1 errors: missing periodical
    All stub articles
     



    This page was last edited on 11 December 2023, at 08:53 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki