Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Salts  





2 Biology  



2.1  Assay in biological systems  







3 Bonding and structure  





4 See also  





5 References  














Superoxide






العربية

Bosanski
Català
Čeština
Deutsch
Español
فارسی
Français
Galego

Bahasa Indonesia
Italiano
עברית
Lietuvių
Magyar

Bahasa Melayu
Nederlands

Oromoo
Polski
Português
Română
Русский
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska

Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Superoxides)

Superoxide

Lewis structure of superoxide. The six outer-shell electrons of each oxygen atom are shown in black; one electron pair is shared (middle); the unpaired electron is shown in the upper-left; and the additional electron conferring a negative charge is shown in red.

Names
IUPAC name

Superoxide

Systematic IUPAC name

Dioxidan-2-idylide

Other names

Hyperoxide, Dioxide(1−)

Identifiers

CAS Number

3D model (JSmol)

ChEBI
ChemSpider

Gmelin Reference

487
KEGG

PubChem CID

UNII
  • InChI=1S/O2/c1-2/q-1

    Key: MXDZWXWHPVATGF-UHFFFAOYSA-N

  • O=[O-]

Properties

Chemical formula

O2
Molar mass 31.998 g·mol−1
Conjugate acid Hydroperoxyl

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Infobox references

Inchemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula O2.[1] The systematic name of the anion is dioxide(1−). The reactive oxygen ion superoxide is particularly important as the product of the one-electron reductionofdioxygen O2, which occurs widely in nature.[2] Molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, and superoxide results from the addition of an electron which fills one of the two degenerate molecular orbitals, leaving a charged ionic species with a single unpaired electron and a net negative charge of −1. Both dioxygen and the superoxide anion are free radicals that exhibit paramagnetism.[3] Superoxide was historically also known as "hyperoxide".[4]

Salts[edit]

Superoxide forms salts with alkali metals and alkaline earth metals. The salts sodium superoxide (NaO2), potassium superoxide (KO2), rubidium superoxide (RbO2) and caesium superoxide (CsO2) are prepared by the reaction of O2 with the respective alkali metal.[5][6]

The alkali salts of O2 are orange-yellow in color and quite stable, if they are kept dry. Upon dissolution of these salts in water, however, the dissolved O2 undergoes disproportionation (dismutation) extremely rapidly (in a pH-dependent manner):[7]

4 O2 + 2 H2O → 3 O2 + 4 OH

This reaction (with moisture and carbon dioxide in exhaled air) is the basis of the use of potassium superoxide as an oxygen source in chemical oxygen generators, such as those used on the Space Shuttle and on submarines. Superoxides are also used in firefighters' oxygen tanks to provide a readily available source of oxygen. In this process, O2 acts as a Brønsted base, initially forming the hydroperoxyl radical (HO2).

The superoxide anion, O2, and its protonated form, hydroperoxyl, are in equilibrium in an aqueous solution:[8]

O2 + H2O ⇌ HO2 + OH

Given that the hydroperoxyl radical has a pKa of around 4.8,[9] superoxide predominantly exists in the anionic form at neutral pH.

Potassium superoxide is soluble in dimethyl sulfoxide (facilitated by crown ethers) and is stable as long as protons are not available. Superoxide can also be generated in aprotic solvents by cyclic voltammetry.

Superoxide salts also decompose in the solid state, but this process requires heating:

2 NaO2 → Na2O2 + O2

Biology[edit]

Superoxide is common in biology, reflecting the pervasiveness of O2 and its ease of reduction. Superoxide is implicated in a number of biological processes, some with negative connotations, and some with beneficial effects.[10]

Like hydroperoxyl, superoxide is classified as reactive oxygen species.[3] It is generated by the immune system to kill invading microorganisms. In phagocytes, superoxide is produced in large quantities by the enzyme NADPH oxidase for use in oxygen-dependent killing mechanisms of invading pathogens. Mutations in the gene coding for the NADPH oxidase cause an immunodeficiency syndrome called chronic granulomatous disease, characterized by extreme susceptibility to infection, especially catalase-positive organisms. In turn, micro-organisms genetically engineered to lack the superoxide-scavenging enzyme superoxide dismutase (SOD) lose virulence. Superoxide is also deleterious when produced as a byproduct of mitochondrial respiration (most notably by Complex I and Complex III), as well as several other enzymes, for example xanthine oxidase,[11] which can catalyze the transfer of electrons directly to molecular oxygen under strongly reducing conditions.

Because superoxide is toxic at high concentrations, nearly all aerobic organisms express SOD. SOD efficiently catalyzes the disproportionation of superoxide:

2 HO2 → O2 + H2O2

Other proteins that can be both oxidized and reduced by superoxide (such as hemoglobin) have weak SOD-like activity. Genetic inactivation ("knockout") of SOD produces deleterious phenotypes in organisms ranging from bacteria to mice and have provided important clues as to the mechanisms of toxicity of superoxide in vivo.

Yeast lacking both mitochondrial and cytosolic SOD grow very poorly in air, but quite well under anaerobic conditions. Absence of cytosolic SOD causes a dramatic increase in mutagenesis and genomic instability. Mice lacking mitochondrial SOD (MnSOD) die around 21 days after birth due to neurodegeneration, cardiomyopathy, and lactic acidosis.[11] Mice lacking cytosolic SOD (CuZnSOD) are viable but suffer from multiple pathologies, including reduced lifespan, liver cancer, muscle atrophy, cataracts, thymic involution, haemolytic anemia, and a very rapid age-dependent decline in female fertility.[11]

Superoxide may contribute to the pathogenesis of many diseases (the evidence is particularly strong for radiation poisoning and hyperoxic injury), and perhaps also to aging via the oxidative damage that it inflicts on cells. While the action of superoxide in the pathogenesis of some conditions is strong (for instance, mice and rats overexpressing CuZnSOD or MnSOD are more resistant to strokes and heart attacks), the role of superoxide in aging must be regarded as unproven, for now. In model organisms (yeast, the fruit fly Drosophila, and mice), genetically knocking out CuZnSOD shortens lifespan and accelerates certain features of aging: (cataracts, muscle atrophy, macular degeneration, and thymic involution). But the converse, increasing the levels of CuZnSOD, does not seem to consistently increase lifespan (except perhaps in Drosophila).[11] The most widely accepted view is that oxidative damage (resulting from multiple causes, including superoxide) is but one of several factors limiting lifespan.

The binding of O2 by reduced (Fe2+) heme proteins involves formation of Fe(III) superoxide complex.[12]

Assay in biological systems[edit]

The assay of superoxide in biological systems is complicated by its short half-life.[13] One approach that has been used in quantitative assays converts superoxide to hydrogen peroxide, which is relatively stable. Hydrogen peroxide is then assayed by a fluorimetric method.[13] As a free radical, superoxide has a strong EPR signal, and it is possible to detect superoxide directly using this method. For practical purposes, this can be achieved only in vitro under non-physiological conditions, such as high pH (which slows the spontaneous dismutation) with the enzyme xanthine oxidase. Researchers have developed a series of tool compounds termed "spin traps" that can react with superoxide, forming a meta-stable radical (half-life 1–15 minutes), which can be more readily detected by EPR. Superoxide spin-trapping was initially carried out with DMPO, but phosphorus derivatives with improved half-lives, such as DEPPMPO and DIPPMPO, have become more widely used.[citation needed]

Bonding and structure[edit]

Superoxides are compounds in which the oxidation number of oxygen is −12. Whereas molecular oxygen (dioxygen) is a diradical containing two unpaired electrons, the addition of a second electron fills one of its two degenerate molecular orbitals, leaving a charged ionic species with single unpaired electron and a net negative charge of −1. Both dioxygen and the superoxide anion are free radicals that exhibit paramagnetism.

The derivatives of dioxygen have characteristic O–O distances that correlate with the order of the O–O bond.

Dioxygen compound name O–O distance (Å) O–O bond order
O+2 dioxygenyl cation 1.12 2.5
O2 dioxygen 1.21 2
O2 superoxide 1.28 1.5[14]
O2−2 peroxide 1.49 1

See also[edit]

References[edit]

  1. ^ Hayyan, M.; Hashim, M.A.; Al Nashef, I.M. (2016). "Superoxide Ion: Generation and Chemical Implications". Chem. Rev. 116 (5): 3029–3085. doi:10.1021/acs.chemrev.5b00407. PMID 26875845.
  • ^ Sawyer, D. T. Superoxide Chemistry, McGraw-Hill, doi:10.1036/1097-8542.669650
  • ^ a b Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, MTD.; Mazur, M.; Telser, J. (August 2007). "Free radicals and antioxidants in normal physiological functions and human disease". International Journal of Biochemistry & Cell Biology. 39 (1): 44–84. doi:10.1016/j.biocel.2006.07.001. PMID 16978905.
  • ^ Hayyan, Maan; Hashim, Mohd Ali; Alnashef, Inas M. (2016). "Superoxide Ion: Generation and Chemical Implications". Chemical Reviews. 116 (5): 3029–3085. doi:10.1021/acs.chemrev.5b00407. PMID 26875845.
  • ^ Holleman, A.F. (2001). Wiberg, Nils (ed.). Inorganic chemistry (1st English ed.). San Diego, CA & Berlin: Academic Press, W. de Gruyter. ISBN 0-12-352651-5.
  • ^ Vernon Ballou, E.; C. Wood, Peter; A. Spitze, LeRoy; Wydeven, Theodore (1 July 1977). "The Preparation of Calcium Superoxide from Calcium Peroxide Diperoxyhydrate". Ind. Eng. Chem. Prod. Res. Dev. 16 (2): 180–186. doi:10.1021/i360062a015.
  • ^ Cotton, F. Albert; Wilkinson, Geoffrey (1988), Advanced Inorganic Chemistry (5th ed.), New York: Wiley-Interscience, p. 461, ISBN 0-471-84997-9
  • ^ Bielski, Benon H. J.; Cabelli, Diane E.; Arudi, Ravindra L.; Ross, Alberta B. (1985). "Reactivity of HO2/O2 Radicals in Aqueous Solution". J. Phys. Chem. Ref. Data. 14 (4): 1041–1091. Bibcode:1985JPCRD..14.1041B. doi:10.1063/1.555739.
  • ^ "HO
    2
    : the forgotten radical Abstract"
    (PDF). Archived from the original (PDF) on 2017-08-08.
  • ^ Yang, Wen; Hekimi, Siegfried (2010). "A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans". PLOS Biology. 8 (12): e1000556. doi:10.1371/journal.pbio.1000556. PMID 21151885.
  • ^ a b c d Muller, F. L.; Lustgarten, M. S.; Jang, Y.; Richardson <first4=A.; Van Remmen, H. (2007). "Trends in oxidative aging theories". Free Radic. Biol. Med. 43 (4): 477–503. doi:10.1016/j.freeradbiomed.2007.03.034. PMID 17640558.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  • ^ Yee, Gereon M.; Tolman, William B. (2015). "Chapter 5, Section 2.2.2 Fe(III)-Superoxo Intermediates". In Kroneck, Peter M.H.; Sosa Torres, Martha E. (eds.). Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Metal Ions in Life Sciences. Vol. 15. Springer. pp. 141–144. doi:10.1007/978-3-319-12415-5_5. ISBN 978-3-319-12414-8. PMID 25707468.
  • ^ a b Rapoport, R.; Hanukoglu, I.; Sklan, D. (May 1994). "A fluorimetric assay for hydrogen peroxide, suitable for NAD(P)H-dependent superoxide generating redox systems". Anal Biochem. 218 (2): 309–13. doi:10.1006/abio.1994.1183. PMID 8074285. S2CID 40487242.
  • ^ Abrahams, S. C.; Kalnajs, J. (1955). "The Crystal Structure of α-Potassium Superoxide". Acta Crystallographica. 8 (8): 503–506. Bibcode:1955AcCry...8..503A. doi:10.1107/S0365110X55001540.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Superoxide&oldid=1224795375"

    Categories: 
    Anions
    Oxygen compounds
    Oxyanions
    Immune system
    Superoxides
    Free radicals
    Reactive oxygen species
    Hidden categories: 
    CS1 maint: numeric names: authors list
    Articles with short description
    Short description is different from Wikidata
    Articles without InChI source
    Articles containing unverified chemical infoboxes
    Chembox image size set
    All articles with unsourced statements
    Articles with unsourced statements from October 2019
     



    This page was last edited on 20 May 2024, at 14:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki