Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The Néel relaxation in the absence of magnetic field  



1.1  Blocking temperature  







2 Effect of a magnetic field  



2.1  Time dependence of the magnetization  







3 Measurements  





4 Effect on hard drives  





5 Applications  



5.1  General applications  





5.2  Biomedical applications  







6 See also  





7 References  



7.1  Notes  





7.2  Sources  







8 External links  














Superparamagnetism






العربية
Български
Català
Deutsch
Eesti
Español
فارسی
Français
Galego
Italiano
עברית
Қазақша
Кыргызча

Oʻzbekcha / ўзбекча
Polski
Português
Русский
Simple English
Slovenčina
Српски / srpski
Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Superparamagnetic)

Superparamagnetism is a form of magnetism which appears in small ferromagneticorferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the Néel relaxation time. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the Néel relaxation time, their magnetization appears to be in average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of paramagnets.

The Néel relaxation in the absence of magnetic field[edit]

Normally, any ferromagnetic or ferrimagnetic material undergoes a transition to a paramagnetic state above its Curie temperature. Superparamagnetism is different from this standard transition since it occurs below the Curie temperature of the material.

Superparamagnetism occurs in nanoparticles which are single-domain, i.e. composed of a single magnetic domain. This is possible when their diameter is below 3–50 nm, depending on the materials. In this condition, it is considered that the magnetization of the nanoparticles is a single giant magnetic moment, sum of all the individual magnetic moments carried by the atoms of the nanoparticle. Those in the field of superparamagnetism call this "macro-spin approximation".

Because of the nanoparticle’s magnetic anisotropy, the magnetic moment has usually only two stable orientations antiparallel to each other, separated by an energy barrier. The stable orientations define the nanoparticle’s so called “easy axis”. At finite temperature, there is a finite probability for the magnetization to flip and reverse its direction. The mean time between two flips is called the Néel relaxation time and is given by the following Néel–Arrhenius equation:[1]

,

where:

This length of time can be anywhere from a few nanoseconds to years or much longer. In particular, it can be seen that the Néel relaxation time is an exponential function of the grain volume, which explains why the flipping probability becomes rapidly negligible for bulk materials or large nanoparticles.

Blocking temperature[edit]

Let us imagine that the magnetization of a single superparamagnetic nanoparticle is measured and let us define as the measurement time. If , the nanoparticle magnetization will flip several times during the measurement, then the measured magnetization will average to zero. If , the magnetization will not flip during the measurement, so the measured magnetization will be what the instantaneous magnetization was at the beginning of the measurement. In the former case, the nanoparticle will appear to be in the superparamagnetic state whereas in the latter case it will appear to be “blocked” in its initial state.

The state of the nanoparticle (superparamagnetic or blocked) depends on the measurement time. A transition between superparamagnetism and blocked state occurs when . In several experiments, the measurement time is kept constant but the temperature is varied, so the transition between superparamagnetism and blocked state is seen as a function of the temperature. The temperature for which is called the blocking temperature:

For typical laboratory measurements, the value of the logarithm in the previous equation is in the order of 20–25.

Equivalently, blocking temperature is the temperature below which a material shows slow relaxation of magnetization.[2]

Effect of a magnetic field[edit]

Langevin function (red line), compared with (blue line).

When an external magnetic field H is applied to an assembly of superparamagnetic nanoparticles, their magnetic moments tend to align along the applied field, leading to a net magnetization. The magnetization curve of the assembly, i.e. the magnetization as a function of the applied field, is a reversible S-shaped increasing function. This function is quite complicated but for some simple cases:

  1. If all the particles are identical (same energy barrier and same magnetic moment), their easy axes are all oriented parallel to the applied field and the temperature is low enough (TB < TKV/(10kB)), then the magnetization of the assembly is
    .
  2. If all the particles are identical and the temperature is high enough (TKV/kB), then, irrespective of the orientations of the easy axes:

In the above equations:

The initial slope of the function is the magnetic susceptibility of the sample :

The latter susceptibility is also valid for all temperatures if the easy axes of the nanoparticles are randomly oriented.

It can be seen from these equations that large nanoparticles have a larger μ and so a larger susceptibility. This explains why superparamagnetic nanoparticles have a much larger susceptibility than standard paramagnets: they behave exactly as a paramagnet with a huge magnetic moment.

Time dependence of the magnetization[edit]

There is no time-dependence of the magnetization when the nanoparticles are either completely blocked () or completely superparamagnetic (). There is, however, a narrow window around where the measurement time and the relaxation time have comparable magnitude. In this case, a frequency-dependence of the susceptibility can be observed. For a randomly oriented sample, the complex susceptibility[3] is:

where

From this frequency-dependent susceptibility, the time-dependence of the magnetization for low-fields can be derived:

Measurements[edit]

A superparamagnetic system can be measured with AC susceptibility measurements, where an applied magnetic field varies in time, and the magnetic response of the system is measured. A superparamagnetic system will show a characteristic frequency dependence: When the frequency is much higher than 1/τN, there will be a different magnetic response than when the frequency is much lower than 1/τN, since in the latter case, but not the former, the ferromagnetic clusters will have time to respond to the field by flipping their magnetization.[4] The precise dependence can be calculated from the Néel–Arrhenius equation, assuming that the neighboring clusters behave independently of one another (if clusters interact, their behavior becomes more complicated). It is also possible to perform magneto-optical AC susceptibility measurements with magneto-optically active superparamagnetic materials such as iron oxide nanoparticles in the visible wavelength range.[5]

Effect on hard drives[edit]

Superparamagnetism sets a limit on the storage density of hard disk drives due to the minimum size of particles that can be used. This limit on areal-density is known as the superparamagnetic limit.

Applications[edit]

General applications[edit]

Biomedical applications[edit]

See also[edit]

References[edit]

Notes[edit]

  1. ^ Néel, L. (1949). "Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites". Ann. Géophys. 5: 99–136. (in French; an English translation is available in Kurti, N., ed. (1988). Selected Works of Louis Néel. Gordon and Breach. pp. 407–427. ISBN 978-2-88124-300-4.).
  • ^ Cornia, Andrea; Barra, Anne-Laure; Bulicanu, Vladimir; Clérac, Rodolphe; Cortijo, Miguel; Hillard, Elizabeth A.; Galavotti, Rita; Lunghi, Alessandro; Nicolini, Alessio; Rouzières, Mathieu; Sorace, Lorenzo (2020-02-03). "The Origin of Magnetic Anisotropy and Single-Molecule Magnet Behavior in Chromium(II)-Based Extended Metal Atom Chains". Inorganic Chemistry. 59 (3): 1763–1777. doi:10.1021/acs.inorgchem.9b02994. hdl:11380/1197352. ISSN 0020-1669. PMC 7901656. PMID 31967457.
  • ^ Gittleman, J. I.; Abeles, B.; Bozowski, S. (1974). "Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films". Physical Review B. 9 (9): 3891–3897. Bibcode:1974PhRvB...9.3891G. doi:10.1103/PhysRevB.9.3891.
  • ^ Martien, Dinesh. "Introduction to: AC susceptibility" (PDF). Quantum Design. Retrieved 15 Apr 2017.
  • ^ Vandendriessche, Stefaan; et al. (2013). "Magneto-optical harmonic susceptometry of superparamagnetic materials". Applied Physics Letters. 102 (16): 161903–5. Bibcode:2013ApPhL.102p1903V. doi:10.1063/1.4801837.
  • ^ Kryder, M. H. (2000). Magnetic recording beyond the superparamagnetic limit. Magnetics Conference, 2000. INTERMAG 2000 Digest of Technical Papers. 2000 IEEE International. p. 575. doi:10.1109/INTMAG.2000.872350. ISBN 0-7803-5943-7.
  • ^ "Computer History Museum: HDD Areal Density reaches 1 terabitper square inch".
  • ^ Wood, R. (January 2000). "R. Wood, "The feasibility of magnetic recording at 1 Terabit per square inch", IEEE Trans. Magn., Vol. 36, No. 1, pp. 36-42, Jan 2000". IEEE Transactions on Magnetics. 36 (1): 36–42. doi:10.1109/20.824422.
  • ^ "Hitachi achieves nanotechnology milestone for quadrupling terabyte hard drive" (Press release). Hitachi. October 15, 2007. Retrieved 1 Sep 2011.
  • ^ Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. (October 2009). "Y. Shiroishi et al., "Future Options for HDD Storage", IEEE Trans. Magn., Vol. 45, No. 10, pp. 3816-22, Sep. 2009". IEEE Transactions on Magnetics. 45 (10): 3816–3822. doi:10.1109/TMAG.2009.2024879. S2CID 24634675.
  • ^ Murray, Matthew (2010-08-19). "Will Toshiba's Bit-Patterned Drives Change the HDD Landscape?". PC Magazine. Retrieved 21 Aug 2010.
  • ^ Fert, Albert; Cros, Vincent; Sampaio, João (2013-03-01). "Skyrmions on the track". Nature Nanotechnology. 8 (3): 152–156. Bibcode:2013NatNa...8..152F. doi:10.1038/nnano.2013.29. ISSN 1748-3387. PMID 23459548.
  • Sources[edit]

  • Weller, D.; Moser, A. (1999). "Thermal Effect Limits in Ultrahigh Density Magnetic Recording". IEEE Transactions on Magnetics. 35 (6): 4423–4439. Bibcode:1999ITM....35.4423W. doi:10.1109/20.809134.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Superparamagnetism&oldid=1224587222"

    Categories: 
    Magnetic ordering
    Statistical mechanics
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Articles containing potentially dated statements from July 2020
    All articles containing potentially dated statements
    CS1 French-language sources (fr)
    Webarchive template wayback links
     



    This page was last edited on 19 May 2024, at 07:22 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki