Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Broadcasts  





2 MAC database instability  





3 Multiple frame transmissions  





4 TTL  





5 See also  





6 References  














Switching loop






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aswitching looporbridge loop occurs in computer networks when there is more than one layer 2 path between two endpoints (e.g. multiple connections between two network switches or two ports on the same switch connected to each other). The loop creates broadcast storms as broadcasts and multicasts are forwarded by switches out every port, the switch or switches will repeatedly rebroadcast the broadcast messages flooding the network.[1] Since the layer-2 header does not include a time to live (TTL) field, if a frame is sent into a looped topology, it can loop forever.

A physical topology that contains switching or bridge loops is attractive for redundancy reasons, yet a switched network must not have loops. The solution is to allow physical loops, but create a loop-free logical topology using link aggregation, shortest path bridging, spanning tree protocolorTRILL on the network switches.

Broadcasts[edit]

In the case of broadcast packets over a switching loop, the situation may develop into a broadcast storm.

In a very simple example, a switch with three ports A, B, and C has a normal node connected to port A while ports B and C are connected to each other in a loop. All ports have the same link speed and run in full duplex mode. Now, when a broadcast frame enters the switch through port A, this frame is forwarded to all ports but the source port, i.e. ports B and C. Both frames exiting ports B and C traverse the loop in opposite directions and reenter the switch through their counterpart port. The frame received on port B is then forwarded to ports A and C, the frame received on port C to ports A and B. So, the node on port A receives two copies of its own broadcast frame while the other two copies produced by the loop continue to cycle. Likewise, each broadcast frame entering the system continues to cycle through the loop in both directions, rebroadcasting back to the network in each loop, and broadcasts accumulate. Eventually, the accumulated broadcasts exhaust the egress capacity of the links, the switch begins dropping frames, and communication across the switch becomes unreliable or even impossible.

MAC database instability[edit]

Switching loops can cause misleading entries in a switch's media access control (MAC) database and can cause endless unicast frames to be broadcast throughout the network. A loop can make a switch receive the same broadcast frames on two different ports, and alternatingly associate the sending MAC address with the one or the other port. It may then incorrectly direct traffic for that MAC address to the wrong port, effectively causing this traffic to be lost, and even causing other switches to incorrectly associate the sender's address with a wrong port as well.

Multiple frame transmissions[edit]

In a redundant switched network it is possible for an end device to receive the same frame multiple times.[citation needed]

TTL[edit]

Routing loops are tempered by a time to live (TTL) field in layer-3 packet header; Packets will circulate the routing loop until their TTL value expires. No TTL concept exists at layer 2 and packets in a switching loop will circulate until dropped, e.g. due to resource exhaustion.

See also[edit]

References[edit]

  1. ^ "How to identify and quickly fix a network switching loop / switching loops?". May 19, 2016.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Switching_loop&oldid=1192324137"

Categories: 
Network performance
Network topology
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles needing additional references from January 2021
All articles needing additional references
All articles with unsourced statements
Articles with unsourced statements from September 2021
 



This page was last edited on 28 December 2023, at 19:56 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki