Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Science objectives  





2 Technical characteristics  





3 Flight  



3.1  Launch failure  







4 Replacement  





5 See also  





6 References  














TARANIS






Español
Français

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


TARANIS
Mission typeMagnetosphere,
ionosphere and
atmosphere studies
OperatorCentre national d'études spatiales (CNES)
Websitehttps://taranis.cnes.fr
Mission duration4 years (planned) [1]
Spacecraft properties
BusMyriade
ManufacturerCentre national d'études spatiales (CNES)
Launch mass175 kg
Power85 watts
Start of mission
Launch date17 November 2020,
01:52:20 UTC
RocketVega VV17
Launch siteCentre Spatial Guyanais, ELV
ContractorAvio, Italy
End of mission
Decay dateLaunch failure (4th stage)
Cause: human error
Last contact: November 17, 2020
Did not achieve orbit, so decay was imminent[2]
Orbital parameters
Reference systemGeocentric orbit
RegimeSun-synchronous orbit
Altitude676.0 km
Inclination98.19°
 

TARANIS (Tool for the Analysis of Radiation from lightning and Sprites) was an observation satellite of the French Space Agency (CNES) which would have studied the transient events produced in the Earth's atmospheric layer between 10 km (6.2 mi) and 100 km (62 mi) altitude.[3][4] TARANIS was launched in November 2020 with SEOSat-Ingenio aboard Vega flight VV17 and would have been placed in a Sun-synchronous orbit at an altitude of 676 km, for a mission duration of two to four years, but the rocket failed shortly after launch.

Science objectives[edit]

The satellite was intended to collect data on transient events that are observed during thunderstorms.[5] These events happen between the medium and upper atmosphere, the ionosphere and the magnetosphere (radiation belts). The resulting phenomena in visible light are called Transient Luminous Events (TLE) and take a great diversity of forms sprites, blue jets, red giants, halos, elves, varying in color, shape and duration, and relations between them. Thunderstorms are also known to generate gamma and X-ray photon emissions called Terrestrial Gamma-ray Flashes (TGF), generated by intense electric fields in which the electrons are accelerated to the point of reaching energies up to 40 MeV (the bremsstrahlung process produces the photons). The link between TLEs and TGFs was one of the scientific questions of the TARANIS mission.[5] The Lightning induced electron precipitation (LEP) were also to be studied.[5] All these events have associated electromagnetic wave emissions which also had to be studied.[5]

The Atmosphere-Space Interactions Monitor (ASIM) of the International Space Station was to operate concurrently with TARANIS and was to provide additional observations.

Technical characteristics[edit]

The TARANIS microsatellite had a mass of 175 kg, and used the Myriade platform powered by solar panels providing 85 watts. The amount of data transferred should have been 24 Gigabits per day. The scientific payload was made of seven instruments:[6]

The studied phenomena last not more than a few milliseconds (except blue jets), therefore a specific recording method is implemented. Scientific instruments operate continuously and data is stored in a memory that is regularly purged of its oldest elements. If a phenomenon is noticed through one of the triggering instrument (XGRE, IDEE, MCP, IME-HF), the data of all the instruments corresponding to the period it took place is saved, and later transmitted to the ground.[8]

Flight[edit]

After launch, TARANIS had to deploy instrument ramps and had to start several months of commissioning and validation. The scientific data were to be available from TARANIS in June 2021.[15] CNES has devoted around 115 million euros, or US136 million, to the TARANIS project since its start in 2010. The mission was designed to operate over two to four years.[15]

Launch failure[edit]

TARANIS was launched from the Centre Spatial Guyanais at 01:52:20 UTC on 17 November 2020.[16] The flight was planned to deploy the satellites into 2 very slightly different sun-synchronous orbits at roughly 670 km (starting 54 minutes until 102 minutes after liftoff), before the upper stage would have re-ignited to re-enter the Earth's atmosphere.[1] However, the rocket failed after launch and the mission was lost. The exact cause could be first ignition of the engine of the Avum fourth stage, a deviation of trajectory was identified, entailing the loss of the mission.[5] Arianespace traces cause of Vega launch failure to "human error".[2] This was the Vega rocket's second failure in three missions.[17]

Replacement[edit]

After TARANIS's failure to orbit, CNES started to plan a replacing mission TARANIS 2 in late 2020 and early 2021. TARANIS 2 is planned to achieve the same scientific objectives as TARANIS would have had TARANIS not failed.[18] TARANIS 2 is planned to launch around 2025.[19]

See also[edit]

References[edit]

  1. ^ a b "Vega flight VV17 launch kit" (PDF). arianespace.com. Arianespace. November 2020. Retrieved 18 November 2020.
  • ^ a b "Arianespace traces cause of Vega launch failure to "human error"". Spaceflight Now. 17 November 2020. Retrieved 18 November 2020.
  • ^ "Taranis". taranis.cnes.fr. CNES. 24 April 2015. Retrieved 10 January 2018.
  • ^ Lefeuvre, Francois; Blanc, Elisabeth; Pinçon, Jean-Louis; Roussel-Dupré, Robert; Lawrence, David; Sauvaud, Jean-André; Rauch, Jean-Louis; Feraudy, Hervé de; Lagoutte, Dominique (1 June 2008). "TARANIS—A Satellite Project Dedicated to the Physics of TLEs and TGFs" (PDF). Space Science Reviews. 137 (1–4): 301–315. Bibcode:2008SSRv..137..301L. doi:10.1007/s11214-008-9414-4. ISSN 0038-6308. S2CID 121504846.
  • ^ a b c d e "Mission". taranis.cnes.fr. 24 April 2015. Retrieved 10 January 2018.
  • ^ "Laboratoire de Physique et Chimie de l'Environnement et de l'Espace - TARANIS". www.lpc2e.cnrs.fr. CNES. Retrieved 10 January 2018.
  • ^ Farges, Thomas; Blanc, Elisabeth; Hébert, Philippe; Le Mer-Dachard, Fanny; Ravel, Karen; Gaillac, Stéphanie (1 April 2017). "MicroCameras and Photometers (MCP) on board TARANIS satellite". EGU General Assembly Conference Abstracts. 19: 6024. Bibcode:2017EGUGA..19.6024F.
  • ^ a b "TARANIS | LABORATOIRE". www.apc.univ-paris7.fr. Retrieved 10 January 2018.
  • ^ a b Sarria, David; Lebrun, François; Blelly, Pierre-Louis; Chipaux, Rémi; Laurent, Philippe; Sauvaud, Jean-André; Prech, Lubomir; Devoto, Pierre; Pailot, Damien (13 July 2017). "TARANIS XGRE and IDEE detection capability of terrestrial gamma-ray flashes and associated electron beams". Geoscientific Instrumentation, Methods and Data Systems. 6 (2): 239–256. Bibcode:2017GI......6..239S. doi:10.5194/gi-6-239-2017. ISSN 2193-0856.
  • ^ VERT, Pole web service communication OMP. "TARANIS / Techniques et missions spatiales / La recherche / OMP". obs-mip.fr. Retrieved 10 January 2018.
  • ^ ES. "Instrumentation". taranis.latmos.ipsl.fr. Retrieved 10 January 2018.
  • ^ "TARANIS IME-HF | CZECH SPACE OFFICE". www.czechspace.cz. Retrieved 10 January 2018.
  • ^ "Laboratoire de Physique et Chimie de l'Environnement et de l'Espace". www.lpc2e.cnrs.fr. CNES. Retrieved 10 January 2018.
  • ^ "SATELLITE". CNES. 18 August 2016. Retrieved 5 September 2020.
  • ^ a b "Vega rocket poised for launch with satellites for Spain and France". Spaceflight Now. 16 November 2020. Retrieved 17 November 2020.
  • ^ Clark, Stephen. "Live coverage: Arianespace probing "anomaly" shortly after Vega launch". Spaceflight Now. Retrieved 17 November 2020.
  • ^ "Status". twitter.com. NASASpaceflight.com. Retrieved 17 November 2020.
  • ^ "Avio CEO promises Vega's rapid return to flight as CNES plots replacement satellite". 20 November 2020.
  • ^ "Taranis 2".

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=TARANIS&oldid=1176550282"

    Categories: 
    2020 in France
    Spacecraft launched in 2020
    Earth observation satellites of France
    Satellite launch failures
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use British English from June 2020
    Use dmy dates from June 2020
     



    This page was last edited on 22 September 2023, at 13:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki