Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Tau decay  





3 Exotic atoms  





4 See also  





5 Footnotes  





6 References  





7 External links  














Tau (particle)






Afrikaans
العربية
Беларуская
Български
Bosanski
Brezhoneg
Català
Čeština
Corsu
Dansk
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Italiano
עברית
Latina
Latviešu
Lietuvių
Limburgs
Magyar
Македонски
Bahasa Melayu
Nederlands

Norsk bokmål
Norsk nynorsk
Occitan

پنجابی
Plattdüütsch
Polski
Português
Русский
Simple English
Slovenčina
Slovenščina
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Tagalog
Türkçe
Українська
Tiếng Vit
Winaray

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Tauon)

Tau
s
CompositionElementary particle
StatisticsFermionic
FamilyLepton
GenerationThird
InteractionsGravity, electromagnetic, weak
Symbol
τ
AntiparticleAntitau (
τ+
)
DiscoveredMartin Lewis Perl et al. (1975)[1][2]
Mass3.16754(21)×10−27 kg[3]
1776.86(12) MeV/c2[4][5]
Mean lifetime2.903(5)×10−13 s[5]
Electric charge−1 e[5]
Color chargeNone
Spin1/2 ħ[5]
Weak isospinLH: −1/2, RH: 0
Weak hyperchargeLH: −1, RH: −2

The tau (τ), also called the tau lepton, tau particle, tauonor tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the positive tau). Tau particles are denoted by the symbol
τ
and the antitaus by 
τ+
.

Tau leptons have a lifetime of 2.9×10−13 s and a massof1776.9 MeV/c2 (compared to 105.66 MeV/c2 for muons and 0.511 MeV/c2 for electrons). Since their interactions are very similar to those of the electron, a tau can be thought of as a much heavier version of the electron. Because of their greater mass, tau particles do not emit as much bremsstrahlung (braking radiation) as electrons; consequently they are potentially much more highly penetrating than electrons.

Because of its short lifetime, the range of the tau is mainly set by its decay length, which is too small for bremsstrahlung to be noticeable. Its penetrating power appears only at ultra-high velocity and energy (above petaelectronvolt energies), when time dilation extends its otherwise very short path-length.[6]

As with the case of the other charged leptons, the tau has an associated tau neutrino, denoted by 
ν
τ
.

History[edit]

The search for tau started in 1960 at CERN by the Bologna-CERN-Frascati (BCF) group led by Antonino Zichichi. Zichichi came up with the idea of a new sequential heavy lepton, now called tau, and invented a method of search. He performed the experiment at the ADONE facility in 1969 once its accelerator became operational; however, the accelerator he used did not have enough energy to search for the tau particle.[7][8][9]

The tau was independently anticipated in a 1971 article by Yung-su Tsai.[10] Providing the theory for this discovery, the tau was detected in a series of experiments between 1974 and 1977 by Martin Lewis Perl with his and Tsai's colleagues at the Stanford Linear Accelerator Center (SLAC) and Lawrence Berkeley National Laboratory (LBL) group.[1] Their equipment consisted of SLAC's then-new electron–positron colliding ring, called SPEAR, and the LBL magnetic detector. They could detect and distinguish between leptons, hadrons, and photons. They did not detect the tau directly, but rather discovered anomalous events:

"We have discovered 64 events of the form


e+
+
e

e±
+
μ
+ at least two undetected particles

for which we have no conventional explanation."

The need for at least two undetected particles was shown by the inability to conserve energy and momentum with only one. However, no other muons, electrons, photons, or hadrons were detected. It was proposed that this event was the production and subsequent decay of a new particle pair:


e+
+
e

τ+
+
τ

e±
+
μ
+ 4
ν

This was difficult to verify, because the energy to produce the
τ+

τ
pair is similar to the threshold for D meson production. The mass and spin of the tau were subsequently established by work done at DESY-Hamburg with the Double Arm Spectrometer (DASP), and at SLAC-Stanford with the SPEAR Direct Electron Counter (DELCO),

The symbol τ was derived from the Greek τρίτον (triton, meaning "third" in English), since it was the third charged lepton discovered.[11]

Martin Lewis Perl shared the 1995 Nobel Prize in Physics with Frederick Reines. The latter was awarded his share of the prize for the experimental discovery of the neutrino.

Tau decay[edit]

Feynman diagram of the decays of the tau by emission of an off-shell W boson

The tau is the only lepton that can decay into hadrons – the masses of other leptons are too small. Like the leptonic decay modes of the tau, the hadronic decay is through the weak interaction.[12][a]

The branching fractions of the dominant hadronic tau decays are:[5]

In total, the tau lepton will decay hadronically approximately 64.79% of the time.

The branching fractions of the common purely leptonic tau decays are:[5]

The similarity of values of the two branching fractions is a consequence of lepton universality.

Exotic atoms[edit]

The tau lepton is predicted to form exotic atoms like other charged subatomic particles. One of such consists of an antitau and an electron:
τ+

e
, called tauonium.[citation needed]

Another one is an onium atom
τ+

τ
called ditauoniumortrue tauonium, which is a challenge to detect due to the difficulty to form it from two (opposite-sign) short-lived tau leptons.[13] Its experimental detection would be an interesting test of quantum electrodynamics.[14]

See also[edit]

Footnotes[edit]

  1. ^ Since the tauonic lepton number is conserved in weak decays, a tau neutrino is always created when a tau decays.[12]

References[edit]

  1. ^ a b Perl, M.L.; Abrams, G.; Boyarski, A.; Breidenbach, M.; Briggs, D.; Bulos, F.; Chinowsky, W.; Dakin, J.; Feldman, G. (1975). "Evidence for anomalous lepton production in
    e+

    e
    annihilation". Physical Review Letters. 35 (22): 1489. Bibcode:1975PhRvL..35.1489P. doi:10.1103/PhysRevLett.35.1489.
  • ^ Okun, L.B. (1980). Leptons and Quarks. Translated by Kisin, V.I. North-Holland Publishing. p. 103. ISBN 978-0444869241.
  • ^ "2022 CODATA Value: tau mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
  • ^ "2022 CODATA Value: tau energy equivalent". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 18 May 2024.
  • ^ a b c d e f Tanabashi, M.; et al. (Particle Data Group) (2018). "Review of Particle Physics". Physical Review D. 98 (3): 030001. Bibcode:2018PhRvD..98c0001T. doi:10.1103/PhysRevD.98.030001. hdl:10044/1/68623.
  • ^ Fargion, D.; de Sanctis Lucentini, P.G.; de Santis, M.; Grossi, M. (2004). "Tau air showers from Earth". The Astrophysical Journal. 613 (2): 1285–1301. arXiv:hep-ph/0305128. Bibcode:2004ApJ...613.1285F. doi:10.1086/423124. S2CID 119379401.
  • ^ Zichichi, A. (1996). "Foundations of sequential heavy lepton searches". In Newman, H.B.; Ypsilantis, T. (eds.). History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series (Series B: Physics). Vol. 352. Boston, MA: Springer. pp. 227–275.
  • ^ 't Hooft, Gerard (1996). In Search of the Ultimate Building Blocks. Cambridge University Press. p. 111.
  • ^ Ricci, R.A.; Barnabei, O.; Monaco, F. Roversi; Maiani, L. (5 June 1998). The Origin of the Third Family: In honour of A. Zichichi on the XXX anniversary of the proposal to search for the third lepton at Adone. World Scientific Series in 20th Century Physics. Vol. 20. Singapore: World Scientific Publishing. ISBN 9810231636. ISBN 978-9810231637
  • ^ Tsai, Yung-Su (1 November 1971). "Decay correlations of heavy leptons in e+ + e+ + ". Physical Review D. 4 (9): 2821. Bibcode:1971PhRvD...4.2821T. doi:10.1103/PhysRevD.4.2821.
  • ^ Perl, M.L. (6–18 March 1977). "Evidence for, and properties of, the new charged heavy lepton" (PDF). In Van, T. Thanh; Orsay, R.M.I.E.M. (eds.). Proceedings of the XII Rencontre de Moriond. XII Rencontre de Moriond. Flaine, France (published April 1977). SLAC-PUB-1923. Retrieved 25 March 2021.
  • ^ a b Riazuddin (2009). "Non-standard interactions" (PDF). NCP 5th Particle Physics Sypnoisis. 1 (1): 1–25.
  • ^ d'Enterria, David; Perez-Ramos, Redamy; Shao, Hua-Sheng (2022). "Ditauonium spectroscopy". European Physical Journal C. 82 (10): 923. arXiv:2204.07269. Bibcode:2022EPJC...82..923D. doi:10.1140/epjc/s10052-022-10831-x. S2CID 248218441.
  • ^ d'Enterria, David; Shao, Hua-Sheng (2023). "Prospects for ditauonium discovery at colliders". Physics Letters B. 842: 137960. arXiv:2302.07365. Bibcode:2023PhLB..84237960D. doi:10.1016/j.physletb.2023.137960.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Tau_(particle)&oldid=1230322957"

    Categories: 
    Elementary particles
    Leptons
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from March 2021
    Pages using Template:Physical constants with rounding
    Articles containing Greek-language text
    All articles with unsourced statements
    Articles with unsourced statements from June 2024
    Articles with GND identifiers
     



    This page was last edited on 22 June 2024, at 02:01 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki