Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Lepton flavor conservation  





2 Violations of the lepton number conservation laws  





3 Reversed signs convention  





4 See also  





5 References  














Lepton number






Afrikaans
العربية
Беларуская
Català
Чӑвашла
Čeština
Deutsch
Eesti
Ελληνικά
Español
Esperanto
فارسی
Français

Հայերեն
ि
Hrvatski
Italiano
עברית
Қазақша
Magyar
Nederlands

Oʻzbekcha / ўзбекча
Polski
Português
Русский
Slovenščina
Татарча / tatarça
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inparticle physics, lepton number (historically also called lepton charge)[1] is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction.[2] Lepton number is an additive quantum number, so its sum is preserved in interactions (as opposed to multiplicative quantum numbers such as parity, where the product is preserved instead). The lepton number is defined by where

Lepton number was introduced in 1953 to explain the absence of reactions such as


ν
+
n

p
+
e

in the Cowan–Reines neutrino experiment, which instead observed


ν
+
p

n
+
e+
.[3]

This process, inverse beta decay, conserves lepton number, as the incoming antineutrino has lepton number −1, while the outgoing positron (antielectron) also has lepton number −1.

Lepton flavor conservation[edit]

In addition to lepton number, lepton family numbers are defined as[4]

the electron number, for the electron and the electron neutrino;
the muon number, for the muon and the muon neutrino; and
the tau number, for the tauon and the tau neutrino.

Prominent examples of lepton flavor conservation are the muon decays


μ

e
+
ν
e
+
ν
μ

and


μ+

e+
+
ν
e
+
ν
μ
.

In these decay reactions, the creation of an electron is accompanied by the creation of an electron antineutrino, and the creation of a positron is accompanied by the creation of an electron neutrino. Likewise, a decaying negative muon results in the creation of a muon neutrino, while a decaying positive muon results in the creation of a muon antineutrino.[5]

Finally, the weak decay of a lepton into a lower-mass lepton always results in the production of a neutrino-antineutrino pair:


τ

μ
+
ν
μ
+
ν
τ
.

One neutrino carries through the lepton number of the decaying heavy lepton, (atauon in this example, whose faint residue is a tau neutrino) and an antineutrino that cancels the lepton number of the newly created, lighter lepton that replaced the original. (In this example, a muon antineutrino with that cancels the muon's .

Violations of the lepton number conservation laws[edit]

Lepton flavor is only approximately conserved, and is notably not conserved in neutrino oscillation.[6] However, both the total lepton number and lepton flavour are still conserved in the Standard Model.

Numerous searches for physics beyond the Standard Model incorporate searches for lepton number or lepton flavor violation, such as the hypothetical decay[7]


μ

e
+
γ
.

Experiments such as MEGA and SINDRUM have searched for lepton number violation in muon decays to electrons; MEG set the current branching limit of order 10−13 and plans to lower to limit to 10−14 after 2016.[8] Some theories beyond the Standard Model, such as supersymmetry, predict branching ratios of order 10−12 to 10−14.[7] The Mu2e experiment, in construction as of 2017, has a planned sensitivity of order 10−17.[9]

Because the lepton number conservation law in fact is violated by chiral anomalies, there are problems applying this symmetry universally over all energy scales. However, the quantum number B − L is commonly conserved in Grand Unified Theory models.

If neutrinos turn out to be Majorana fermions, neither individual lepton numbers, nor the total lepton number nor

BL

would be conserved, e.g. in neutrinoless double beta decay, where two neutrinos colliding head-on might actually annihilate, similar to the (never observed) collision of a neutrino and antineutrino.

Reversed signs convention[edit]

Some authors prefer to use lepton numbers that match the signs of the charges of the leptons involved, following the convention in use for the sign of weak isospin and the sign of strangeness quantum number (for quarks), both of which conventionally have the otherwise arbitrary sign of the quantum number match the sign of the particles' electric charges.

When following the electric-charge-sign convention, the lepton number (shown with an over-bar here, to reduce confusion) of an electron, muon, tauon, and any neutrino counts as the lepton number of the positron, antimuon, antitauon, and any antineutrino counts as When this reversed-sign convention is observed, the baryon number is left unchanged, but the difference B − L is replaced with a sum: B + L , whose number value remains unchanged, since

L = −L,

and

B + L = B − L.

See also[edit]

References[edit]

  1. ^ Gribov, V.; Pontecorvo, B. (1969-01-20). "Neutrino astronomy and lepton charge". Physics Letters B. 28 (7): 493–496. Bibcode:1969PhLB...28..493G. doi:10.1016/0370-2693(69)90525-5. ISSN 0370-2693.
  • ^ Griffiths, David J. (1987). Introduction to Elementary Particles. Wiley, John & Sons, Inc. ISBN 978-0-471-60386-3; Tipler, Paul; Llewellyn, Ralph (2002). Modern Physics (4th ed.). W.H. Freeman. ISBN 978-0-7167-4345-3.
  • ^ Konopinski, E.J.; Mahmoud, H.M. (1953-11-15). "The universal Fermi interaction". Physical Review. 92 (4): 1045–1049. Bibcode:1953PhRv...92.1045K. doi:10.1103/physrev.92.1045.
  • ^ Martin, Victoria J., Professor (25 February 2008). Quarks & leptons, mesons, & baryons (PDF) (lecture notes). Physics 3. Vol. Lecture 5. University of Edinburgh. p. 2. Retrieved May 23, 2021.{{cite report}}: CS1 maint: multiple names: authors list (link)
  • ^ Slansky, Richard; Raby, Stuart; Goldman, Terry; Garvey, Gerry (1997). Cooper, Necia Grant (ed.). "The Oscillating Neutrino: An introduction to neutrino masses and mixing" (PDF). Los Alamos Science. Los Alamos National Laboratory. pp. 10–56. Retrieved 23 May 2021.
  • ^ Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; et al. (Super-Kamiokande collaboration) (1998-08-24). "Evidence for oscillation of atmospheric neutrinos". Physical Review Letters. 81 (8): 1562–1567. arXiv:hep-ex/9807003. Bibcode:1998PhRvL..81.1562F. doi:10.1103/PhysRevLett.81.1562. S2CID 7102535.
  • ^ a b Adam, J.; Bai, X.; Baldini, A.M.; Baracchini, E.; Bemporad, C.; Boca, G.; et al. (MEG Collaboration) (21 Oct 2011). "New limit on the lepton-flavor-violating decay mu+ to e+ gamma". Physical Review Letters. 107 (17): 171801. arXiv:1107.5547. Bibcode:2011PhRvL.107q1801A. doi:10.1103/PhysRevLett.107.171801. PMID 22107507. S2CID 119278774.
  • ^ Baldini, A.M.; et al. (MEG collaboration) (May 2016). "Search for the lepton flavour violating decay μ+ → e+ γ with the full dataset of the MEG Experiment". arXiv:1605.05081 [hep-ex].
  • ^ Kwon, Diana (2015-04-21). "Mu2e breaks ground on experiment seeking new physics" (Press release). Fermi National Accelerator Laboratory. Retrieved 2017-12-08.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Lepton_number&oldid=1228685314"

    Categories: 
    Conservation laws
    Particle physics
    Leptons
    Flavour (particle physics)
    Hidden categories: 
    CS1 maint: multiple names: authors list
    CS1: long volume value
    Articles with short description
    Short description is different from Wikidata
    Articles with GND identifiers
     



    This page was last edited on 12 June 2024, at 16:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki