Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Notation  





2 Conservation law  





3 Relation with chirality  



3.1  Neutrinos  







4 Weak isospin and the W bosons  





5 See also  





6 Footnotes  





7 References  














Weak isospin






العربية
Беларуская
Català
Чӑвашла
Deutsch
Español
فارسی
Français

Italiano
עברית
Magyar

Português
Русский
Slovenščina
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inparticle physics, weak isospin is a quantum number relating to the electrically charged part of the weak interaction: Particles with half-integer weak isospin can interact with the
W±
bosons; particles with zero weak isospin do not. Weak isospin is a construct parallel to the idea of isospin under the strong interaction. Weak isospin is usually given the symbol TorI, with the third component written as T3orI3 . T3 is more important than T; typically "weak isospin" is used as short form of the proper term "3rd component of weak isospin". It can be understood as the eigenvalue of a charge operator.

Notation

[edit]

This article uses T and T3 for weak isospin and its projection. Regarding ambiguous notation, I is also used to represent the 'normal' (strong force) isospin, same for its third component I3 a.k.a. T3orTz . Aggravating the confusion, T is also used as the symbol for the Topness quantum number.

Conservation law

[edit]

The weak isospin conservation law relates to the conservation of weak interactions conserve T3. It is also conserved by the electromagnetic and strong interactions. However, interaction with the Higgs field does not conserve T3, as directly seen in propagating fermions, which mix their chiralities by the mass terms that result from their Higgs couplings. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time, even in vacuum. Interaction with the Higgs field changes particles' weak isospin (and weak hypercharge). Only a specific combination of electric charge is conserved. The electric charge, is related to weak isospin, and weak hypercharge, by

In 1961 Sheldon Glashow proposed this relation by analogy to the Gell-Mann–Nishijima formula for charge to isospin.[1][2]: 152 

Relation with chirality

[edit]

Fermions with negative chirality (also called "left-handed" fermions) have and can be grouped into doublets with that behave the same way under the weak interaction. By convention, electrically charged fermions are assigned with the same sign as their electric charge. For example, up-type quarks (u, c, t) have and always transform into down-type quarks (d, s, b), which have and vice versa. On the other hand, a quark never decays weakly into a quark of the same Something similar happens with left-handed leptons, which exist as doublets containing a charged lepton (
e
,
μ
,
τ
) with and a neutrino (
ν
e
,
ν
μ
,
ν
τ
) with In all cases, the corresponding anti-fermion has reversed chirality ("right-handed" antifermion) and reversed sign

Fermions with positive chirality ("right-handed" fermions) and anti-fermions with negative chirality ("left-handed" anti-fermions) have and form singlets that do not undergo charged weak interactions. Particles with do not interact with
W±
bosons
; however, they do all interact with the
Z0
boson
.

Neutrinos

[edit]

Lacking any distinguishing electric charge, neutrinos and antineutrinos are assigned the opposite their corresponding charged lepton; hence, all left-handed neutrinos are paired with negatively charged left-handed leptons with so those neutrinos have Since right-handed antineutrinos are paired with positively charged right-handed anti-leptons with those antineutrinos are assigned The same result follows from particle-antiparticle charge & parity reversal, between left-handed neutrinos () and right-handed antineutrinos ().


Left-handed fermions in the Standard Model[3]
Generation 1 Generation 2 Generation 3
Fermion Electric
charge
Symbol Weak
isospin
Fermion Electric
charge
Symbol Weak
isospin
Fermion Electric
charge
Symbol Weak
isospin
Electron Muon Tauon
Up quark Charm quark Top quark
Down quark Strange quark Bottom quark
Electron neutrino Muon neutrino Tau neutrino
All of the above left-handed (regular) particles have corresponding right-handed anti-particles with equal and opposite weak isospin.
All right-handed (regular) particles and left-handed anti-particles have weak isospin of 0.

Weak isospin and the W bosons

[edit]

The symmetry associated with weak isospin is SU(2) and requires gauge bosons with (
W+
,
W
, and
W0
) to mediate transformations between fermions with half-integer weak isospin charges. [4] implies that
W
bosons have three different values of

Under electroweak unification, the
W0
boson mixes with the weak hypercharge gauge boson
B0
; both have weak isospin = 0 . This results in the observed
Z0
boson and the photonofquantum electrodynamics; the resulting
Z0
and
γ0
likewise have zero weak isospin.

See also

[edit]

Footnotes

[edit]

References

[edit]
  1. ^ Glashow, Sheldon L. (1961-02-01). "Partial-symmetries of weak interactions". Nuclear Physics. 22 (4): 579–588. doi:10.1016/0029-5582(61)90469-2. ISSN 0029-5582.
  • ^ Greiner, Walter; Müller, Berndt; Greiner, Walter (1996). Gauge theory of weak interactions (2 ed.). Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo: Springer. ISBN 978-3-540-60227-9.
  • ^ Baez, John C.; Huerta, John (2010). "The algebra of Grand Unified Theories". Bulletin of the American Mathematical Society. 47 (3): 483–552. arXiv:0904.1556. Bibcode:2009arXiv0904.1556B. doi:10.1090/s0273-0979-10-01294-2. S2CID 2941843.
    "§2.3.1 isospin and SU(2), redux". Huerta's academic site. U.C. Riverside. Retrieved 15 October 2013.
  • ^ An introduction to quantum field theory, by M.E. Peskin and D.V. Schroeder (HarperCollins, 1995) ISBN 0-201-50397-2; Gauge theory of elementary particle physics, by T.P. Cheng and L.F. Li (Oxford University Press, 1982) ISBN 0-19-851961-3; The quantum theory of fields (vol 2), by S. Weinberg (Cambridge University Press, 1996) ISBN 0-521-55002-5.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Weak_isospin&oldid=1231784837"

    Categories: 
    Standard Model
    Flavour (particle physics)
    Electroweak theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from August 2023
    All articles needing additional references
     



    This page was last edited on 30 June 2024, at 07:27 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki