Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 List of technology-critical elements  





2 Applications of technology-critical elements  





3 Environmental considerations  





4 See also  





5 References  














Technology-critical element






Català
עברית
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Atechnology-critical element (TCE) is a chemical element that is critical to modern and emerging technologies,[1][2][3] resulting in a striking increase in their usage.[1][4][5][6] Similar terms include critical elements,[7] critical materials,[1] critical raw materials,[5][8] energy-critical elements[4] and elements of security.[9]

Many advanced engineering applications, such as clean-energy production, communications and computing, use emergent technologies that utilize numerous chemical elements.[4] In 2013, the U.S. Department of Energy (DOE) created the Critical Materials Institute (CMI) to address the issue.[10] In 2015, the European COST Action TD1407 created a network of scientists working and interested on TCEs, from an environmental perspective to potential human health threats.[11]

A study estimated losses of 61 metals to help the development of circular economy strategies, showing that usespans of, often scarce, tech-critical metals are short.[12][13]

List of technology-critical elements[edit]

The set of elements usually considered as TCEs vary depending on the source, but they usually include:

Seventeen rare-earth elements

  • dysprosium
  • erbium
  • europium
  • gadolinium
  • holmium
  • lanthanum
  • lutetium
  • neodymium
  • praseodymium
  • promethium
  • samarium
  • scandium
  • terbium
  • thulium
  • ytterbium
  • yttrium
  • The six platinum-group elements

  • osmium
  • palladium
  • platinum
  • rhodium
  • ruthenium
  • Twelve assorted elements

  • beryllium
  • caesium
  • cobalt
  • gallium
  • germanium
  • indium
  • lithium
  • niobium
  • tantalum
  • tellurium
  • tungsten
  • Applications of technology-critical elements[edit]

    TCEs have a variety of engineering applications in fields such as energy storage, electronics, telecommunication, and transportation.[14] These elements are utilized in cellular phones, batteries, solar panel(s), electric motor(s), and fiber-optic cables. Emerging technologies also incorporate TCEs. Most notably, TCEs are used in the data networking of smart devices tied to the Internet of Things (IoT) and automation.[14]

    Sample uses of technology-critical elements (excluding rare-earth) [11]
    Element Compound Applications
    Gallium (Ga) GaAs, GaN Wafers for (a) integrated circuits in high-performance computers and telecommunications equipment and (b) LEDs, photodetectors, solar cells and medical equipment
    Trimethyl Ga, triethyl Ga Epitaxial layering process for the production of LEDs
    Germanium (Ge) Ge Substrate for wafers for high-efficiency photovoltaic cells
    Ge single crystals Detectors (airport security)
    Hafnium (Hf) Hf Aerospace alloys and ceramics
    HfO2 Semiconductors and data storage devices
    Indium (In) In2O5Sn Transparent conductive thin film coatings on flat-panel displays (e.g. liquid crystal displays)
    Niobium (Nb) CuNbGaSe (CIGS) Thin film solar cells
    HSLA ferro-Nb (60 % Nb), Nb metal High-grade structural steel for vehicle bodies
    NiNb Superalloys for jet engines and turbine blades
    Nb powder, Nb oxide Surface acoustic wave filters (sensor and touch screen technologies)
    Platinum-group metals (PGMs) Pd, Pt, Rh metals Catalytic converters for the car industry
    Platinum (Pt) Pt metal Catalyst refining of petroleum and magnetic coating of computer hard discs
    Iridium (Ir) Ir Crucibles for the electronics industry
    Osmium (Os) Os alloys High wear applications such as instrument pivots and electrical contacts
    Tantalum (Ta) Ta oxide Capacitors in automotive electronics, personal computers and cell phones
    Ta metal Pacemakers, prosthetic devices
    Tellurium (Te) CdTe Solar cells
    HgCdTe, BiTe Thermal cooling devices and electronics products
    Zirconium (Zr) Zr Ceramics for solid oxide fuel cells, jet turbine coatings, and smartphones

    Environmental considerations[edit]

    The extraction and processing of TCEs may cause adverse environmental impacts. The reliance on TCEs and critical metals like cobalt can run the risk of the “green curse,” or using certain metals in green technologies whose mining may be damaging to the environment.[15]

    The clearing of soil and deforestation that is involved with mining can impact the surrounding biodiversity through land degradation and habitat loss. Acid mine drainage can kill surrounding aquatic life and harm ecosystems. Mining activities and leaching of TCEs can pose significant hazards to human health. Wastewater produced by the processing of TCEs can contaminate groundwater and streams. Toxic dust containing concentrations of metals and other chemicals can be released into the air and surrounding bodies of water.

    Deforestation caused by mining results in the release of stored carbon from the ground to the atmosphere in the form of carbon dioxide (CO2).[15]

    See also[edit]

    References[edit]

    1. ^ a b c U.S. Department of Energy. Critical Materials Strategy. Washington, D.C.: U.S. Department of Energy.
  • ^ "Technology Critical Elements and their Relevance to the Global Environment Facility" (PDF). Retrieved 10 July 2022.
  • ^ Dang, Duc Huy; Filella, Montserrat; Omanović, Dario (1 November 2021). "Technology-Critical Elements: An Emerging and Vital Resource that Requires more In-depth Investigation". Archives of Environmental Contamination and Toxicology. 81 (4): 517–520. Bibcode:2021ArECT..81..517D. doi:10.1007/s00244-021-00892-6. ISSN 1432-0703. PMID 34655300. S2CID 238995249.
  • ^ a b c APS (American Physical Society) and MRS (The Materials Research Society) (2011). Energy Critical Elements: Securing Materials for Emerging Technologies (PDF). Washington, D.C.: APS.
  • ^ a b European Commission (2010). Critical Raw Materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials.
  • ^ Resnick Institute (2011). Critical Materials for Sustainable Energy Applications (PDF). Pasadena, CA: Resnick Institute for Sustainable Energy Science.
  • ^ Gunn, G. (2014). Critical Metals Handbook. Wiley.
  • ^ European Commission (2014). Report on Critical Raw Materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. European Commission.
  • ^ Parthemore, C. (2011). Elements of Security. Mitigating the Risks of U.S. Dependence on Critical Minerals. Center for New America Security.
  • ^ Turner, Roger (21 June 2019). "A Strategic Approach to Rare-Earth Elements as Global Trade Tensions Flare". www.greentechmedia.com.
  • ^ a b Cobelo-García, A.; Filella, M.; Croot, P.; Frazzoli, C.; Du Laing, G.; Ospina-Alvarez, N.; Rauch, S.; Salaun, P.; Schäfer, J. (2015). "COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats". Environ. Sci. Pollut. Res. 22 (19): 15188–15194. Bibcode:2015ESPR...2215188C. doi:10.1007/s11356-015-5221-0. PMC 4592495. PMID 26286804.  This article incorporates text available under the CC BY 4.0 license.
  • ^ "New life cycle assessment study shows useful life of tech-critical metals to be short". University of Bayreuth. Retrieved 23 June 2022.
  • ^ Charpentier Poncelet, Alexandre; Helbig, Christoph; Loubet, Philippe; Beylot, Antoine; Muller, Stéphanie; Villeneuve, Jacques; Laratte, Bertrand; Thorenz, Andrea; Tuma, Axel; Sonnemann, Guido (19 May 2022). "Losses and lifetimes of metals in the economy" (PDF). Nature Sustainability. 5 (8): 717–726. Bibcode:2022NatSu...5..717C. doi:10.1038/s41893-022-00895-8. ISSN 2398-9629. S2CID 248894322.
  • ^ a b Ali, S.; Katima, J. (2020). Technology Critical Elements and the GEF, A STAP Advisory Document. Washington, DC.: Scientific and Technical Advisory Panel to the Global Environment Facility.
  • ^ a b Ali, S.; Katima, J. (2020). Technology Critical Elements and their Relevance to the Global Environment Facility. Washington, DC.: Scientific and Technical Advisory Panel to the Global Environment Facility.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Technology-critical_element&oldid=1196727599"

    Categories: 
    Sets of chemical elements
    Scarcity
    History of technology
    Natural resources
    Hidden categories: 
    Articles with imported Creative Commons Attribution 4.0 text
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 18 January 2024, at 07:55 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki